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A mathematical programming model has been developed in this study to determine the best
measurement locations in a given process network and also the optimal numbers of redundant
and spare sensors used in a corrective maintenance program. The model solution yields the
maximum system availability under a set of user supplied limitations on life-cycle cost and/or
estimator’s precision. Genetic algorithms were used to identify the optimum in an evolutionary
process. The usefulness of the proposed approach is demonstrated with extensive case studies.

Introduction

Accurate estimators of key process variables are
considered to be essential for assessing the performance
of any chemical plant. To achieve a high degree of
precision and/or reliability in data reconciliation, one
of the main emphases in the past has been concerned
with the optimal placement of sensors. Vaclavek and
Loucka1 first proposed a design technique to ensure
variable observability on the basis of graph theory.
Kretsovalis and Mah2 developed a combinatorial search
algorithm to enhance the precision of reconciled results.
Capital cost was later adopted as the objective function
of the sensor-network optimization problem.3 Ali and
Narasimhan4 suggested that system reliability should
also be considered as an important design criterion in
identifying the sensor locations. They developed a
computational procedure to determine the estimation
reliability of each process variable and chose the small-
est among them as the system reliability. This approach
was then extended to redundant networks and bilinear
networks.5,6 The above sensor location goals were
incorporated into various MINLP formulations by Baga-
jewicz and co-workers.7-10 These optimization problems
can be solved easily with implicit tree-type enumeration
techniques,7 as well as genetic algorithms.11 Raghuraj
et al.12 added yet another constraint, i.e., the fault
diagnostic observability, in the design of sensor net-
works. Bhushan and Rengaswamy13 developed a corre-
sponding digraph-based sensor placement procedure.
Finally, a comprehensive review of the mathematical
models used for the design of sensor networks can be
found in Bagajewicz.14

In addition to the problem of sensor placement, it is
apparent that issues in stipulating an appropriate
maintenance policy should also be addressed to improve
the availability and/or precision of the measurement
systems. In the literature, only Sanchez and Bagajew-
icz15 tried to analyze the impact of integrating a simple

corrective maintenance program in the design of flow
sensor networks. Although they obtained reasonable
results in that study, it should be noted that discussions
of other maintenance practices have not been included
at all. Notice that, in many industrial plants, important
operation goals such as safety and quality can often be
closely linked to the availability and precision of moni-
toring systems. It is thus the intention of our study to
incorporate the possibilities of redundant and spare
hardware in a corrective maintenance model and also
to develop a mathematical program for generating the
best sensor locations and their maintenance strategy
simultaneously in a mass-flow network.

The rest of this paper is organized as follows. To
facilitate later discussions, the structure of our problem
formulation is first presented explicitly. The computa-
tional approach used to evaluate system availability is
then briefly outlined. Next, a comprehensive corrective
maintenance program, including options for repair and
replacement, is described in detail. On the basis of the
corresponding state-space diagram, a general Markov
model can be derived to describe the sensor states
associated with each process stream. The expected costs
of repair and replacement and the life-cycle cost of the
sensor network can also be determined accordingly. The
usefulness of the proposed mathematical program is
demonstrated with an application example at the end
of this paper.

Problem Formulation

In the proposed mathematical programming model,
the system availability is always used as the objective
function to be maximized. Notice that system reliability
is not considered here because availability is a more
appropriate performance measure in the development
of maintenance policies. Two types of inequalities are
allowed in this model. In particular, the life-cycle cost
of the sensor network and the estimator’s precision of
a designated set of process streams can be constrained.
The general structure of the problem formulation can
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be written as

subject to

where AS is the system availability; LCC and CT
represent the life-cycle cost and its highest allowable
limit, respectively; and σp and σp

/ denote the standard
deviation of the flow-rate estimate of stream p and its
upper bound, respectively. Notice that the parameters
CT and σp

/ and also the streams in set P̃ should be
supplied by the designer in advance. Here, P̃ ⊂ P, and
P is the set of all process streams.

The design variables of this problem are integers.
They can be classified into three vectors

where N is the total number of the process streams. The
variables lp, mp, and np denote the sensor type and the
numbers of purchased and installed sensors, respec-
tively, for stream p. Note that all of these variables
should be greater than or equal to zero and that mp g
np ∀p ∈ P. Furthermore, if stream p is not equipped
with on-line sensors, then it is assumed in this study
that lp ) mp ) np ) 0.

Estimation Availability

Without considering the options to repair and/or
replace sensors, Ali and Narasimhan4 suggested that
the smallest value among the estimation reliabilities of
all process streams can be treated as a performance
measure of the sensor network. The same approach is
taken in this study to determine system availability for
the development of optimal maintenance policy. In other
words

where Ap is the estimation availability of stream p, and
it can be computed according to the following equation

where Ap
D and Ap

I denote the direct and indirect esti-
mation availabilities, respectively. The direct estimation
availability Ap

D is dependent on the failure rate(s) and
also the maintenance policy of the sensor(s) installed
on stream p. Its computation procedure is described in
detail in the following sections. On the other hand, the
indirect availability Ap

I is a function of the direct
estimation availabilities of the streams in cut sets

containing stream p. This is due to a theorem stating
that all of the different ways of indirectly estimating
the mass flow of stream p are given by the cut sets that
contain stream p in which the mass flow of every other
stream is measured.5 Let S1, S2, ..., SM be the stream
sets obtained by removing stream p from such cut sets.
Then the availability of valid data for estimating stream
p indirectly can be determined on the basis of

Because an evaluation algorithm of this probability has
been well documented by Ali and Narasimhan,5 the
detailed computation steps are not illustrated in this
paper for the sake of brevity.

Maintenance Policy

As mentioned previously, a change in the sensor
maintenance policy can have a significant impact on the
direct estimation availability. Assuming a constant
failure rate λ, it can be shown that Ap

D for a nonrepair-
able sensor is exponentially distributed over time,16 i.e.

If the simplest corrective maintenance policy is adopted,
i.e., the sensor is repaired only after it fails, then the
sensor availability can be treated as the direct estima-
tion availability of stream p. Specifically

Here, the repair rate µ is also assumed to be constant.
The derivation of this equation can be found in a
standard textbook, e.g., Henley and Kumamoto.16 If µ
. λ and t . 1/µ, the time-variant availability can be
approximated with a constant steady-state value,16 i.e.

In this study, a more comprehensive corrective main-
tenance program is adopted. In particular, both on-line
redundant and off-line spare sensors are allowed to
improve the system availability and also the estimator’s
precision. This maintenance strategy can be sum-
marized as follows:

1. A total of mp sensors are purchased for measuring
the flow rate of stream p. Among them, np (np e mp)
redundant sensors are installed on-line. The remaining
mp - np sensors are stored off-line and treated as spares.
It is assumed that a normal spare sensor can never fail.

2. If an on-line sensor fails and at least one off-line
sensor is functional, then the former is replaced with a
spare. The failed sensor is taken off-line and then placed
in a queue for repair. This practice is due to the
assumption that replacement is much faster than
repair.

3. The repair process for the failed off-line sensors is
in effect only when all on-line sensors are normal. It is
assumed that these failed sensors can only be repaired
one-by-one in sequence.

4. The repair process for the failed on-line sensors is
in effect if none of the off-line sensors are functional. It

max AS (1)

LCC e CT (2)

σp e σp
/ ∀p ∈ P̃ (3)

l ) [l1, l2, ..., lN]T

m ) [m1, m2, ..., mN]T

n ) [n1, n2, ..., nN]T

AS ) min
p∈P

Ap (4)

Ap )

{Ap
I if stream p is unmeasured

1 - (1 - Ap
I )(1 - Ap

D) if stream p is measured
(5)

Ap
I ) Pr{S1 ∪ S2 ∪ ‚‚‚ ∪ SM} (6)

Ap
D(t) ) e-λt (7)

Ap
D(t) ) µ

λ + µ
+ λ

λ + µ
e-(λ+µ)t (8)

Ap
D(t) ≈ µ

λ + µ
(9)
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is again assumed that these failed sensors can only be
repaired one-by-one in sequence.

General Markov Model

The state-space method is adopted in this work for
availability evaluation. All sensors used for the mea-
surement of a particular process stream can be char-
acterized by their states and by the possible transitions
among these states. A state-space diagram or Markov
diagram can be used for the representation of these
transition processes. For illustration convenience, let us
consider the case when mp g np ) 2. The corresponding
Markov diagram can be found in Figure 1. Notice that
each node in this diagram represents a distinct system
state and each state can be characterized by the
numbers of failed (or functional) sensors on-line and also
off-line. Specifically, the definitions of the states in this
model are given below:

State 3j (j ) 0, 1, 2, ..., mp - np): All on-line sensors
are normal, i.e., the number of failed on-line sensors is
zero. Among the mp - np off-line sensors, j of them are
out of order, but the rest are functional.

State 3j + 1 (j ) 0, 1, 2, ..., mp - np): One of the on-
line sensors is not working. The conditions of the off-
line sensors are the same as those in state 3j, i.e., the
number of failed off-line sensors is j.

State 3j + 2 (j ) 0, 1, 2, ..., mp - np): All on-line
sensors are broken, i.e., the number of failed on-line
sensors is 2. The number of failed off-line sensors is
again j.

Notice that the transition rates are marked next to
the arcs connecting the states. In particular, λ, µ, and ε
denote the failure rate, repair rate, and replacement
rate, respectively, of a single sensor. The following
observations can be made from this Markov diagram:

1. Sensor failure can occur when the system is in
states 3j and 3j + 1 for j ) 0, 1, 2, ..., mp - np.

2. Sensor replacement can be done under the condi-
tion that the system state is 3j + 1 or 3j + 2 for j ) 0,
1, 2, ..., mp - np - 1.

3. Sensor repair can be carried out only if the system
state is 3(mp - np) + 1, 3(mp - np) + 2, or 3j for j ) 0,
1, 2, ..., mp - np.

Notice that the second maintenance policy described
in the previous section is reflected in item 2 above, and
the third and fourth policies are consistent with item
3. Item 1 is trivial as a failure can only occur when at
least one on-line sensor is functional. Notice also that
the failure rate associated with the transition from state

3j to state 3j + 1 is 2λ. This is because there are two
normal sensors that might fail.

Let us assume that the entire operation period is long
enough that the steady-state probabilities of the system
states can be reached within a relatively short time
interval. These probabilities can be related to a set of
state equations derived from the Markov diagram in
Figure 1. Specifically, the models associated with the
system states 0, 1, and 2 can be written as

where P0, P1, P2, and P3 denote the long-term prob-
abilities of the system in states 0, 1, 2, and 3, respec-
tively. For the intermediate states 3j, 3j + 1, and 3j +
2 (j ) 1, 2, ..., mp - 3), the following state equations are
valid

Here again, the symbol Pk is used to denote probability
of intermediate system state k. For states 3mp - 6, 3mp
- 5, and 3mp - 4, i.e., states in which all off-line sensors
are not working, the maintenance practices are not the
same as those for the intermediate states. Consequently,
a slightly different set of state equations can be obtained

Finally, it is obvious that the sum of the probabilities
of all possible states should be 1, i.e.

Figure 1. Markov diagram of a general corrective maintenance program (mp g np ) 2).

-2λP0 + µP3 ) 0 (10)

2λP0 - (λ + ε)P1 ) 0 (11)

λP1 - εP2 ) 0 (12)

εP3j-2 + µP3j+3 - (µ + 2λ)P3j ) 0 (13)

2λP3j + εP3j-1 - (λ + ε)P3j+1 ) 0 (14)

λP3j+1 - εP3j+2 ) 0 (15)

εP3mp-8 + µP3mp-5 - (µ + 2λ)P3mp-6 ) 0 (16)

2λP3mp-6 + εP3mp-7 + µP3mp-4 - (λ + µ)P3mp-5 ) 0
(17)

λP3mp-5 - µP3mp-4 ) 0 (18)

∑
k)0

3mp-4

Pk ) 1 (19)
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Notice that eqs 10-17 and 19 can be solved simulta-
neously. The solution procedure is outlined below. First,
one can obtain from eqs 10-12 that

Next, from eqs 13-15, the following relations can be
derived

From eqs 20-25, it is clear that all intermediate
probabilities can be expressed in terms of P0. In addi-
tion, eqs 16 and 17 can be rearranged as

Thus, the last two probabilities in the Markov model
can also be written as explicit functions of P0. Conse-
quently, all of the above results can be substituted into
eq 19 to solve for P0. Once the analytical form of P0 is
obtained, the other probabilities can also be determined
accordingly.

In this work, the flow rate of stream p is assumed to
be measurable as long as at least one on-line sensor is
normal. Thus, its direct estimation availability can be
expressed as

Finally, notice that there are np + 1 rows and mp -
np + 1 columns in the Markov diagram presented in
Figure 1. Various maintenance models can be derived
by selecting appropriate values for np and mp. Three
special cases of the general Markov model are presented
below:

Corrective Maintenance with Only Spare Sen-
sors. In this case, there is only one on-line sensor, and
thus mp > np ) 1. The Markov diagram is reduced to
the one presented in Figure 2. By following the same
derivation procedure, the following results can be
obtained

The direct estimation availability of stream p can thus
be computed according to

Corrective Maintenance with Only Redundant
Sensors. In this case, there are no off-line sensors, and
therefore mp ) np g 2. Let us consider the special
example when np ) 2. The Markov diagram in Figure 1
now becomes the simplified version shown in Figure 3.
The same derivation procedure can be used to produce
an explicit formula for the direct estimation availability

Figure 2. Markov diagram of a corrective maintenance program with only spare sensors (mp g np ) 1).

P1 ) 2λ
λ + ε

P0 (20)

P2 ) 2λ2

ε(λ + ε)
P0 (21)

P3 ) 2λ
µ

P0 (22)

P3j+1 ) ε

λ + ε
P3j-1 + 2λ

λ + ε
P3j (23)

P3j+2 ) λ
ε
P3j+1 (24)

P3j+3 ) 2λ + µ
µ

P3j - ε

µ
P3j-2 (25)

P3mp-5 ) 2λ
λ + µ

P3mp-6 - µ
λ + µ

P3mp-4 + ε

λ + µ
P3mp-7

(26)

P3mp-4 ) λ
µ
P3mp-5 (27)

Ap
D ) ∑

j)0

mp-2

(P3j + P3j+1) (28)

Figure 3. Markov diagram of a corrective maintenance program
with only redundant sensors (mp ) np ) 2).

P2j )
(λ

µ)j

(1 +
λ

ε
) ∑

k)0

mp-2(λ

µ)k

+ (1 +
λ

µ)(λ

µ)mp-1

j ) 0, 1, ..., mp - 1 (29)

P2j+1 )
(λ

µ)jλ

ε

(1 +
λ

ε
) ∑

k)0

mp-2(λ

µ)k

+ (1 +
λ

µ)(λ

µ)mp-1

j ) 0, 1, ..., mp - 2 (30)

P2mp-1 )
(λ

µ)mp

(1 +
λ

ε
) ∑

k)0

mp-2(λ

µ)k

+ (1 +
λ

µ)(λ

µ)mp-1
(31)

Ap
D ) ∑

j)0

mp-1

P2j (32)

Ap
D ) P0 + P1 )

µ(2λ + µ)

(µ + λ)2 + λ2
(33)
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Corrective Maintenance without Redundant
and Spare Sensors. Here, mp ) np ) 1, and the result
in eq 9 can be derived in a straightforward fashion.

Life-Cycle Cost

The life-cycle cost of the sensor network is, of course,
the sum of the costs of all sensors, i.e.

where LCCp is the life-cycle cost of the sensors for the
measurement of stream p. As suggested by Sanchez and
Bagajewicz,15 this cost can be considered to be domi-
nated by the procurement cost (PCp) and maintenance
cost (MCp), i.e.

In this study, the procurement cost is determined
according to

where Cp
C denotes the capital cost of a single sensor for

measuring the flow rate of stream p. On the other hand,
the maintenance cost is the sum of the expected costs
of repair and replacement, ECp

repr and ECp
repl, i.e.

These expected costs can be estimated on the basis of
the maintenance model. Specifically

and

where T represents the operating life of the sensor
network in years; r is the interest rate; Cp

repr and Cp
repl

denote the operating costs per repair and per replace-
ment, respectively; and ENp

repr(k - 1, k) and ENp
repl(k -

1, k) represent the expected numbers of repairs and
replacements, respectively, in time interval [(k - 1), k].
By definition,16 the expected number of repairs between
two distinct times, t1 and t2, can be determined by
integrating the unconditional repair intensity ν(t), i.e.,
ENp

repr(t1, t2) ) ∫t1

t2 ν(t) dt, and ν(t) is the probability that
a sensor will be repaired per unit time at time t. Because
sensor repairs are allowed only at states 3j (j ) 1, 2, ...,
mp - 2), 3mp - 5, and 3mp - 4 in the general Markov
model (see Figure 1), the expected number of repairs in

a year can thus be approximated by the following
equation16

The approximation formula for expected number of
replacements can be derived in a similar fashion, i.e.

For the sake of completeness, the formulas for evalu-
ating the expected numbers of repairs and replacements
in three special cases of the general Markov model are
also listed below:

Corrective Maintenance with Only Spare Sen-
sors.

Corrective Maintenance with Only Redundant
Sensors.

Corrective Maintenance without Redundant
and Spare Sensors.

Precision of Flow Estimator

To satisfy the constraint imposed by eq 3, it is
necessary to evaluate the standard deviations of the
estimated flow rates. The conventional approach7 is
followed in our work to perform this task. Because the
formulas for computing the variances of reconciled data
are well documented,17 they are not repeated in this
paper. However, it should be noted that the conventional
formulation was established on the basis of the assump-
tion that at most one sensor can be installed on a process
stream. If redundant sensors are allowed in sensor
network design, the reduced incidence matrix must be
modified before the existing formulas can be used.
Specifically, if np (np g 1) sensors are installed on a
process stream (say stream p), then the corresponding
arc in the process graph should be treated as np fictitious
arcs connected in series, and the np - 1 connecting
nodes of these arcs should be viewed as fictitious units

LCC ) ∑
p∈P

LCCp (34)

LCCp ≈ PCp + MCp (35)

PCp ) mpCp
C (36)

MCp ) ECp
repr + ECp

repl (37)

ECp
repr ) Cp

repr∑
k)1

T ENp
repr(k - 1, k)

(1 + r)k
(38)

ECp
repl ) Cp

repl∑
k)1

T ENp
repl(k - 1, k)

(1 + r)k
(39)

ENp
repr(k - 1, k) ≈

∫k-1

k
µ(P3mp-4 + P3mp-5 + ∑

j)1

mp-2

P3j) dt

) µ(P3mp-4 + P3mp-5 + ∑
j)1

mp-2

P3j) (40)

ENp
repl(k - 1, k) ) ε ∑

j)0

mp-3

(P3j+1 + P3j+2) (41)

ENp
repr(k - 1, k) ) µ(P2mp-1 + ∑

j)1

mp-1

P2j) (42)

ENp
repl(k - 1, k) ) ε ∑

j)0

mp-2

P2j+1 (43)

ENp
repr(k - 1, k) ) µ(P1 + P2) )

2λµ(λ + µ)

(λ + µ)2 + λ2
(44)

ENp
repl(k - 1, k) ) 0 (45)

ENp
repr(k - 1, k) ) µ[1 - Ap(t)] ) λµ

λ + µ
(46)

ENp
repl(k - 1, k) ) 0 (47)
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in the process. Consequently, every fictitious arc in the
modified process graph is associated with only one on-
line sensor. The resulting mass balance equations can
then be used in the conventional data reconciliation
calculations.

For illustration purposes, let us consider the process
graph shown in Figure 4 representing a simplified
ammonia process.18 This graph contains six nodes and
eight arcs, with node E denoting the environment and
nodes U1-U5 the major units. If hardware redundancy
is not considered in sensor network design, then the
reduced incidence matrix can be written as

Notice that the rows and columns correspond to the
nodes and arcs, respectively, and that the structure of
the process graph is represented with the nonzero
entries in the matrix. For example, the positions of -1
and +1 in the second column can be used to reflect the
fact that stream S2 flows from unit U2 to unit U3. If
two redundant sensors are installed on stream S2, i.e.,
n2 ) 2, then the modified process graph can be found
in Figure 5, and the corresponding incidence matrix is

As mentioned before, stream S2 is now treated as two
fictitious arcs connected in series, i.e., S2(1) and S2(2),
and they are represented with the nonzero entries
(marked by asterisks) in the second and third columns
in the above matrix. Notice also that the connecting
node of these two fictitious arcs, i.e., e1, is reflected by
an additional row, i.e., the third row. If there are three
or more sensors on stream S2 or redundant sensors on
the other process streams, the corresponding reduced
incidence matrix can be constructed in the same way.
As long as the incidence matrix is available, the
standard deviation of any stream can be evaluated
easily according to the conventional method.

Solution Algorithms

As mentioned previously, the design variables of the
present optimization problem, i.e., lp, mp, and np, are
restricted to zeros or natural numbers. Because gradi-
ent-based methods are not suitable for such problems,
genetic algorithms (GAs) were used to solve the math-
ematical program defined in eqs 1-3.

Generally speaking, GAs can be considered as a
stochastic evolution strategy imitating the natural
selection process of biological species. The basic analogy
is established between a design variable in the optimi-
zation problem and a gene in a chromosome (or indi-
vidual). Thus, one chromosome represents a possible
solution. In our studies, the conventional encoding
approach is used for representing lp, mp, and np with
standard genetic codes.19,20 The evolution process in GA
begins with an initial population. The genetic code of
each chromosome in this population is produced with a
random number generator. Once the initial population
is available, three commonly used evolution steps, i.e.,
reproduction, crossover, and mutation, are executed
repeatedly until the total number of generations reaches
an assigned value. In this study, the reproduction step
is performed according to the popular roulette-wheel
selection scheme. A two-point crossover procedure is
then implemented to swap genes between chromosomes.
Finally, the uniform mutation technique is adopted to
alter the genetic codes of several randomly chosen
chromosomes. After reproduction, crossover, and muta-
tion are performed in each generation, an elitism
strategy is practiced to preserve the best chromosome
identified so far. In particular, the largest fitness value
achieved in the current generation is compared with
that of a chromosome temporarily stored in a buffer. If
the former is larger, then this chromosome should be
stored instead, and the current population remains
unchanged. Otherwise, the worst chromosome in the
current population should be replaced by the one
originally stored in the buffer.

When this fitness measure is used in an optimization
problem, it usually serves as the objective function. The
constraint equations can often be handled by introduc-

Figure 4. Process graph of the simplified ammonia process.

Figure 5. Modified process graph of the simplified ammonia
process (n2 ) 2).

Table 1. Sensor Parameters

sensor type

parameter 1 2 3

purchase cost (CC) 350.0 250.0 200.0
repair cost (Crepr) 70.0 50.0 40.0
replacement cost (Crepl) 7.0 5.0 4.0
failure rate (λ) 0.3 0.6 0.7
repair rate (µ) 1.0 1.0 1.0
replacement rate (ε) 50.0 50 0.0 50.0
sensor precision (σ/m) 1.5% 2.5% 3.0%

[-1 0 0 0 0 +1 0 +1
+1 -1* 0 0 0 0 0 0
0 +1* -1 0 0 0 0 0
0 0 +1 -1 -1 0 0 0
0 0 0 +1 0 0 -1 -1

] (48)

[-1 0 0 0 0 0 +1 0 +1
+1 -1* 0 0 0 0 0 0 0
0 +1* -1* 0 0 0 0 0 0
0 0 +1* -1 0 0 0 0 0
0 0 0 +1 -1 -1 0 0 0
0 0 0 0 +1 0 0 -1 -1

] (49)
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ing additional penalties. To facilitate implementation
of the roulette-wheel selection scheme in reproduction,
the fitness measure must always be represented by a
positive number. Thus, the following fitness function is
used in our study

where obj denotes the objective function of optimization
problem, peni represents the penalty function associated
with the ith inequality constraint, and wi is the corre-
sponding weight. The objective function used in this
study has already been described previously in eq 1. The
penalty functions are expressed as

where

Application Example

The ammonia process presented in Figure 4 is again
considered here to demonstrate the usefulness of the
proposed mathematical programming model. In par-
ticular, the optimization problem defined in eqs 1-3 has
been solved repeatedly under different constraint levels
to study the impacts of exercising various maintenance
options on the system availability and also on the
estimator’s precision. The sensor parameters given in
Table 1 were used in all of our computations. It should
be noted that the precision of each sensor is defined as
the ratio between the standard deviation (σ) and unbi-
ased mean (m) of its measurement data under normal
operating conditions. It is further assumed that, in this
example, P̃ ) {2, 5}, and the precision requirements

specified in eq 3 are imposed according to two sets of
parameters, i.e.

The expected values of the normal flow measurements
of streams 1-8, i.e., m1 - m8, used in this example are
100, 100, 100, 60, 40, 70, 30, and 30 kg/s, respectively.
Notice from eq 5 that it might not be necessary to obtain
direct measurements of a process stream to raise its
estimation availability to a satisfactory level. It is thus
assumed that no sensors should be purchased for the
streams on which on-line sensors are not installed, i.e.,
mp ) 0 if np ) 0. Finally, a life cycle of 5 years and an
interest rate of 3.0% are used in all of the case studies
presented below.

Let us first consider the results of applying the
simplest corrective maintenance policy to the streams
on which a single sensor is installed, i.e., mp ) np ) 1
or mp ) np ) 0 (∀p ∈ P). The optimal solutions of the
corresponding mathematical programs can be found in
Table 2. Three cases are presented here. They were
obtained with the same precision requirement, i.e., set
A, but different cost limits, i.e., 2000, 3000, and 4000.
It can be observed from Table 2 that, by relaxing the
cost constraint, the optimal system availability can be
gradually improved. The optimal sensor network de-
signs in these three cases are presented in Table 3.
Notice that, if the design variable for sensor type (lp)
assumes a value of zero, then the corresponding flow
should be unmeasured. Notice also that the best sensor,
i.e., type 1, is installed on every stream in case 3. Thus,
the corresponding system availability, i.e., 0.9598 (see
Table 2), is the maximum achievable value if spare and
redundant sensors are not allowed in the corrective
maintenance program.

Table 2. Optimal Solutions of Mathematical Programming Model (mp ) np ) 1 or mp ) np ) 0)

case no.

1 2 3

cost limit (CT) 2000.0 3000.0 4000.0
precision requirement set A A A
system availability (AS) 0.8318 0.9542 0.9598
life-cycle cost (LCC) 1983.0 2984.0 3410.0
estimation precision of stream 2 (σ2/m2) 0.5898% 0.5804% 0.5414%
estimation precision of stream 5 (σ5/m5) 1.3720% 1.2319% 1.2011%

Table 3. Optimal Sensor Network Designs (mp ) np ) 1 or mp ) np ) 0)

stream no. (p)

1 2 3 4 5 6 7 8

case no. 1
sensor type (lp) 0 0 1 0 1 3 1 1
est. avail. (Ap) 0.8736 0.8736 0.9169 0.8333 0.8742 0.8318 0.8742 0.9169

case no. 2
sensor type (lp) 1 0 1 1 1 1 1 1
est. avail. (Ap) 0.9924 0.9911 0.9924 0.9800 0.9615 0.9615 0.9542 0.9800

case no. 3
sensor type (lp) 1 1 1 1 1 1 1 1
est. avail. (Ap) 0.9982 0.9980 0.9982 0.9830 0.9688 0.9688 0.9598 0.9830

fit ) obj +∑
i

(wi)(peni) (50)

peni ) 1
zi + 1

(51)

zi )

{0 if the corresponding constraint is satisfied
(CT - LCC)2 if the corresponding cost constraint is violated

(σp
/ - σp)

2 if the corresponding precision constraint is violated
(52)

set A

σ2
/

m2
) 1.0%

σ5
/

m5
) 1.5%

set B

σ2
/

m2
) 0.5%

σ5
/

m5
) 1.0%
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Next, let us introduce an additional practice, i.e.,
spares, into the above maintenance strategy to enhance
the system performance. Specifically, if a sensor is
installed on stream p, then spares are also allowed, i.e.,
mp g np ) 1 or mp ) np ) 0 (∀p ∈ P). The solutions of
the corresponding mathematical program and the op-
timal sensor network designs are presented in Tables
4 and 5. From the results in Tables 2 and 4, it can be
clearly seen that it is indeed possible to improve the
system availability to a level higher than the upper limit

achieved with the simple corrective maintenance strat-
egy mentioned previously. Also, from the values of σ2/
m2 and σ5/m5, it can be concluded that the estimator’s
precision of stream 2 or 5 cannot really be enhanced
with spares. Notice also that the network designs in
cases 2 and 4 are the same under the same cost
constraint, i.e., CT ) 3000. This is because the system
availability is defined as the lowest value among all
estimation availabilities, i.e., eqs 4 and 5, and the spares
can only improve the direct estimation availabilities of

Table 4. Optimal Solutions of Corrective Maintenance Model (mp g np ) 1 or mp ) np ) 0)

case no.

4 5 6

cost limit (CT) 3000.0 4000.0 4500.0
precision requirement set A A A
system availability (AS) 0.9542 0.9843 0.9916
life-cycle cost (LCC) 2984.0 3957.0 4483.0
estimation precision of stream 2 (σ2/m2) 0.5804% 0.5930% 0.6774%
estimation precision of stream 5 (σ5/m5) 1.2319% 1.2421% 1.2512%

Table 5. Optimal Sensor Network Designs (mp g np ) 1 or mp ) np ) 0)

stream no. (p)

1 2 3 4 5 6 7 8

case no. 4
total quan. (mp) 1 0 1 1 1 1 1 1
sensor type (lp) 1 0 1 1 1 1 1 1
est. avail. (Ap) 0.9924 0.9911 0.9924 0.9800 0.9615 0.9615 0.9542 0.9800

case no. 5
total quan. (mp) 1 1 1 2 1 1 1 2
sensor type (lp) 1 2 2 1 1 1 1 1
est. avail. (Ap) 0.9977 0.9974 0.9977 0.9955 0.9843 0.9859 0.9879 0.9954

case no. 6
total quan. (mp) 1 0 1 2 2 2 2 2
sensor type (lp) 1 0 1 2 1 1 1 2
est. avail. (Ap) 0.9973 0.9968 0.9973 0.9962 0.9916 0.9916 0.9916 0.9962

Table 6. Optimal Solutions of Corrective Maintenance Model (mp g np g 1 or mp ) np ) 0)′

case no.

7 8 9 10

cost limit (CT) 4500.0 5000.0 6000.0 6500.0
precision requirement set B B B B
system availability (AS) 0.9793 0.9902 0.9954 0.9967
life-cycle cost (LCC) 4476.0 4982.0 5913.0 6456.0
estimation precision of stream 2 (σ2/m2) 0.4848% 0.4738% 0.4185% 0.4185%
estimation precision of stream 5 (σ5/m5) 0.9342% 0.9084% 0.8886% 0.8886%

Table 7. Optimal Sensor Network Designs (mp g np g 1 or mp ) np ) 0)

stream no. (p)

1 2 3 4 5 6 7 8

case no. 7
total quan. (mp) 1 0 1 2 2 2 1 2
redun. deg. (np) 1 0 1 2 2 2 1 2
sensor type (lp) 2 0 2 1 1 1 1 1
est. avail. (Ap) 0.9957 0.9948 0.9957 0.9933 0.9814 0.9814 0.9793 0.9933

case no. 8
total quan. (mp) 2 0 1 2 2 2 2 1
redun. deg. (np) 2 0 1 2 2 2 2 1
sensor type (lp) 1 0 2 1 1 1 1 1
est. avail. (Ap) 0.9984 0.9978 0.9980 0.9975 0.9907 0.9907 0.9902 0.9952

case no. 9
total quan. (mp) 2 0 2 2 2 2 2 2
redun. deg. (np) 2 0 2 2 2 2 2 2
sensor type (lp) 1 0 1 1 1 1 1 1
est. avail. (Ap) 0.9997 0.9996 0.9997 0.9986 0.9963 0.9963 0.9954 0.9986

case no. 10
total quan. (mp) 2 0 2 2 2 2 3 2
redun. deg. (np) 2 0 2 2 2 2 2 2
sensor type (lp) 1 0 1 1 1 1 1 1
est. avail. (Ap) 0.9997 0.9996 0.9997 0.9991 0.9967 0.9967 0.9976 0.9991
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the corresponding streams, i.e., eq 32. Because the cost
limit in case 4 is relatively low, incorporating the spares
must cause an increase in the number of unmeasured
streams and thus might yield a lower system avail-
ability. Consequently, the highest availability in this
case is achieved by placing sensors on as many process
streams as possible and by excluding spares in the
network design. On the other hand, from cases 5 and 6
in Table 5, it is obvious that spares can be used to
increase the system availability effectively if the cost
constraint allows direct measurement of almost every
stream in the process.

As mentioned before, the estimator’s precision for a
process stream is not affected by the use of spares. Thus,
the benefits of introducing hardware redundancy are
studied in a series of additional case studies. In par-
ticular, the options of spare and redundant sensors are
both incorporated in the mathematical programming
model under more stringent precision requirements, i.e.,
set B. If a stream (say stream p) is directly measured,
then the general corrective maintenance strategy is
applicable to the corresponding sensors, i.e., mp g np g
1. If a stream is not required to be measured directly,
then no sensors should be purchased, i.e., mp ) np ) 0.
The solutions of the mathematical program and the
optimal sensor network designs are presented in Tables
6 and 7. From Table 6, it is clear that the system
availability and estimator’s precision can both be im-
proved to the desired levels if the cost constraint can
be sufficiently relaxed. Notice from Table 7 that the
degree of redundancy (np) on each stream in the network
design of case 9 is the same as that of case 10. As a
result, the precision levels of streams 2 and 5 in these
two cases are also the same (see Table 6). The extra cost
of case 10 is incurred from the addition of a spare sensor
for stream 7. Its impact is mainly an increase in the
system availability.

Conclusions

A comprehensive mathematical programming model
has been developed in this study for identifying the best
measurement locations in a given process network and
also the optimal numbers of redundant and spare
sensors used in the general corrective maintenance
program. From the results we have obtained in exten-
sive case studies, the following conclusions can be
drawn:

1. Spare sensors can be used to significantly raise the
system availability.

2. Although adopting redundant hardware is a less
effective means for improving availability, it can be
applied to reduce the variability in flow estimation.

3. If the life-cycle cost of a sensor network is not a
limiting condition, the maximum precision and avail-
ability achieved with the conventional design and
maintenance strategies can both be surpassed with the
use of a proper combination of redundant and spare
sensors.
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Nomenclature

Ap ) estimation availability of stream p
Ap

D ) direct estimation availability of stream p

Ap
I ) indirect estimation availability of stream p

AS ) system availability
CT ) upper limit of life-cycle cost, LCC
Cp

C ) capital cost of a single sensor for the measurement
of stream p

Cp
repl ) operating cost per replacement

Cp
repr ) operating cost per repair

ECp
repl ) expected cost of sensor replacement for stream p

ECp
repr ) expected cost of sensor repair for stream p

ENp
repl(t1, t2) ) expected number of replacements in the

time interval [t1, t2]
ENp

repr(t1, t2) ) expected number of repairs in the time
interval [t1, t2]

fit ) fitness function in the genetic algorithm
LCC ) life-cycle cost of the sensor network
LCCp ) life-cycle cost of the sensors for the measurement

of stream p
lp ) design variable denoting the sensor type on stream p
l ) vector [l1, l2, ..., lN]T

mp ) design variable denoting the total number of sensors
purchased for stream p

m ) vector [m1, m2, ..., mN]T

MCp ) maintenance cost of stream p
np ) design variable denoting the number of redundant

sensors installed on stream p
n ) vector [n1, n2, ..., nN]T

obj ) objective function
Pk ) long-term probability of the system at state k
P ) set of all process streams
P̃ ) set of process streams on which precision requirements

are imposed
PCp ) procurement cost of stream p
peni ) penalty function associated with the ith inequality

constraint
Sj ) stream set obtained by removing the stream under

consideration from the jth cut set containing such stream
r ) interest rate
T ) operating life of the sensor network
wi ) weight of the ith penalty in the fitness function

Greek Letters

λ ) failure rate
µ ) repair rate
ε ) replacement rate
σp ) standard deviation of the flow-rate estimate of stream

p
σp
/ ) upper bound of σp
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