
Petri-Net-Based Deductive Reasoning Strategy for Fault
Identification in Batch Processes

Yi-Feng Wang and Chuei-Tin Chang*

Department of Chemical Engineering, National Cheng Kung University,
Tainan, Taiwan 70101, Republic of China

In implementing any hazard analysis method, there is always a need to reason deductively to
identify all possible fault origins that could lead to an undesirable consequence. Because of the
complex time-variant cause-and-effect relations between events and states in batch chemical
processes, a rigorous risk assessment study is labor- and time-consuming, and its results are
often error-prone. The aim of this paper is thus to develop deductive reasoning algorithms on
the basis of Petri nets for automating such cause-finding procedures. The effectiveness and
correctness of this approach is successfully demonstrated with a number of practical examples.

1. Introduction

To ensure operation safety, hazard analysis is one of
the basic tasks that must be performed while designing
or revamping any chemical process. A variety of tech-
niques have already been proposed in the literature,
including hazard and operability (HAZOP) studies,
fault-tree analysis (FTA), and failure mode and effect
analysis (FMEA). In applying any of these methods,
there is always a need to identify all possible causes of
an undesirable consequence with a deductive reasoning
approach. Traditionally, the task of characterizing the
corresponding fault propagation scenarios is performed
manually on an ad hoc basis. For a complex chemical
process, the demand for time and effort is often over-
whelming. To alleviate this practical problem, many
attempts have been made to automate the cause-finding
process on the basis of various qualitative models.

The research on automatic hazard analysis has
advanced significantly in the past 2 decades. Many
efficient tools have been employed for the development
of fault-tree synthesis algorithms, e.g., digraphs,1,2

decision tables,3 and mini-fault trees,4,5 among others.
Several generic expert systems have also been con-
structed to produce comprehensive HAZOP reports.6-8

The prerequisite of fault identification in using these
methods is basically a qualitative system model. It can
be observed from the literature that digraphs are, by
far, the most popular choice.9-12 Although the digraph-
based approach has been demonstrated to be useful, it
is effective mostly in applications concerning continuous
processes. This is because digraphs are inherently
unsuitable for describing dynamic causal relationships
among times, discrete events, equipment states, and
system configurations in batch or semibatch processes.

In the recent literature, Petri nets (PNs) have often
been used as a modeling tool to circumvent the above
drawbacks.13,14 Wang et al.15 and Wang and Chang16

have developed a step-by-step procedure for constructing
the appropriate Petri nets for the modeling of normal
and abnormal batch operations. Systematic simulation
techniques have also been proposed to enumerate all

critical fault propagation scenarios. In implementing
such an approach, it is necessary to first acquire a
comprehensive list of failure modes associated with each
component in the system. Next, all failure scenarios
must be generated with repeated simulation runs. The
possible causes of the undesirable consequence under
investigation can then be identified from the simulation
results. However, as the system complexity increases,
the number of cases requiring simulation becomes
extremely large. Thus, this fault identification procedure
tends to be tedious and ineffective if it is applied to
realistic systems.

To relieve the work load, a novel PN-based deductive
reasoning method is developed in this study. Essen-
tially, this method is implemented on the basis of
backward Petri nets. To illustrate the proposed deduc-
tive reasoning strategy, the rest of this paper is orga-
nized as follows: Because an accurate (forward) system
model must be constructed to describe the fault propa-
gation behaviors first, the model-building approach is
briefly outlined in section 2. In section 3, a simple
procedure is presented to transform the system model
into the corresponding backward Petri nets. The time-
stamped fault-tree synthesis rules are then provided in
section 4 for the representation of deductive reasoning
processes. A modified version of the conventional state
equation is developed in section 5 to facilitate computer
implementation of the fault-tree construction algorithm.
Section 6 is concerned with a special failure mode that
can be described with the stalled transitions in Petri-
net models. The above PN-based reasoning techniques
are all incorporated into the systematic fault identifica-
tion procedure presented in section 7. Finally, this
procedure is applied to an air-drying process in section
8 to demonstrate the effectiveness of the proposed
strategy.

2. System Model

A formal mathematical description of an ordinary
Petri net can be found in Peterson.17 As originally
designed, it comprises only three types of elements,
namely, discrete places, discrete transitions, and normal
arcs. A discrete place is marked by a circle, and a
discrete transition is marked by a bar. A normal arc is
represented by a directed solid line. It connects either
a place to a transition or vice versa.

* To whom correspondence should be addressed. Tel.: 886-
6-275-7575 ext. 62663. Fax: 886-6-234-4496. E-mail: ctchang@
mail.ncku.edu.tw.

2704 Ind. Eng. Chem. Res. 2004, 43, 2704-2720

10.1021/ie034026l CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/27/2004

To facilitate proper representation of the sequential
operations in batch processes, several special extensions
are also employed in the present study. Following is a
list of these additional transitions and arcs:18

(i) Timed Transitions. The introduction of deter-
ministic time labels into Petri nets was first attempted
by Ramchandani.19 In his applications, a time label was
placed at each transition, denoting the facts that transi-
tions are often used to represent actions and actions
take time to complete. On the other hand, if a transition
is without a time label, it is usually treated as an
untimed transition. This added feature is especially
suitable for characterizing various operating steps in
practical batch processes.

(ii) Weighted Arcs. A distinct positive integer k can
be used to label each arc. A k-weighted arc is interpreted
as a set of k parallel normal arcs. These weighted arcs
are used in this work mainly to allow more flexibility
in system modeling. Notice also that the labels for unity
weights are often omitted from the Petri nets for the
sake of simplicity.

(iii) Inhibitor Arcs. An inhibitor arc is usually
represented by a directed solid line pointing to a
transition with a small circle at its end. This type of
arc can be used in executing zero tests or in modeling
the failure mechanisms that inhibit certain normal
events in operation.

(iv) Static Test Arcs. A static test arc is marked by
a directed dash line pointing to a transition. In general,
such arcs are used to replace self-looping structures in
Petri nets. In other words, a static test arc is equivalent
to two equally weighted arcs in opposite directions.

The execution of a Petri net is controlled according
to the token distribution in the net. Specifically, the
following enabling and firing rules should be employed
to govern the token flows:

Enabling Rule. A transition ti is said to be enabled
if the number of tokens in each input place pj is greater
than or equal to the weight of the weighted arc (or static
test arc) connecting pj to ti, i.e., M(pj) g W(pj,ti), ∀pj ∈
Pi, or less than the weight of the inhibitor arc connecting
pj to ti, i.e., M(pj) < W(pj,ti), ∀pj ∈ Pi, where M(pj) denotes
the token number in place pj, W(pj,ti) denotes the weight
associated with the arc from place pj to transition ti, and
Pi is the set of all input places connecting to transition
ti.

Firing Rule. A transition ti is firable at time ST if
and only if it is enabled continuously during the time
interval [ST - ∆θ(ti), ST], where ∆θ(ti) denotes the time
delay associated with transition ti.

If an input place is connected to a transition with a
weighted arc, a portion of the place’s tokens must be
removed after the transition is fired . The number of
removed tokens should equal to the weight on the
corresponding place-to-transition arc. Moreover, ad-
ditional tokens must be deposited in each output place
at the same time, and the number of deposited tokens
should equal the weight of the corresponding transition-
to-place arc. Finally, if an input place is connected to a
transition with an inhibitor arc or a static test arc, then
its tokens should not be removed after firing.

In constructing a Petri-net-based system model, a
hierarchical approach can be followed to describe the
operating steps in batch processes. Basically, each item
in the piping and instrumentation diagram P&ID is
described with a component model. The normal behavior
of each component should first be represented with the

Petri-net elements described above. Moreover, to facili-
tate hazard analysis, it is also necessary to incorporate
additional elements in each component model to depict
its failure mechanisms. All completed component models
can then be classified into a hierarchy of four different
levels (see Table 1). In building the system model, these
component models should be assembled one-by-one from
the top level to the bottom level according to a given
P&ID. It should also be noted that this Petri-net
construction approach is in fact more suitable for
smaller systems with moderately complex recipes. The
net size can grow rapidly as the number of pieces of
equipment in a process increases. This is due to the
state-space explosion caused by the need to describe not
only the process configurations but also the operating
steps in an industrial-size system model. Consequently,
the tasks of building the component models and then
synthesizing the system model can be very time-
consuming in practical applications.

Although the number of units in a realistic system
might be large, it is often possible to group the units
into relatively few equipment types, e.g., controllers,
valves, pumps, separators, reactors, heat exchangers,
etc. Thus, the model-building effort can be somewhat
reduced by prefabricating a set of standard component
models of the often-used units in all four levels of the
hierarchy presented in Table 1. The system model can
simply be built by retrieving the needed components
from a database and then assembling them according
to the given P&ID. The detailed description of this
systematic model construction procedure is omitted from
this paper since it has already been published else-
where.16

3. Backward Petri Nets

The backward Petri net (BPN) is a useful vehicle for
tracking the deductive reasoning steps in hazard analy-
sis. It can be easily obtained from the system model
according to the following conversion procedure:

1. Review the forward Petri net (FPN), i.e., the system
model. If the weights of its inhibitor arcs are W1, W2,
..., WI, then make ∏i)1

I Wi copies of the FPN. In each
copy, the weights of the inhibitor arcs should be a
unique combination of integers w1, w2, ..., wI such that
1 e w1 e W1, ..., 1 e wI e WI.

2. Reverse the directions of all input and output arcs
in the above PN copies.

3. Apply the arc transformation rules specified in
Table 2 to determine the type and weight of each
reversed arc.

Notice from Table 2 that, although static test arcs and
inhibitor arcs are allowed in a forward Petri net, all of
them should be transformed into normal or weighted

Table 1. Hierarchy in PN-Based System Models for
Sequential Operations

level component models

1 timer, operator, PLC
2 valve, pump, compressor
3 process unit
4 sensor

Table 2. Arc Transformation Rules

original
arc type

original
arc weight

reversed
arc type

reversed
arc weight

normal W normal W
static test W normal W
inhibitor W normal W - 1

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2705

arcs in the corresponding backward nets. Let us now
consider the simple FPN in Figure 1 as an example. The
delay times of transitions t1, t2, t3, and t4 are 0, 1, 2,
and 3 units, respectively. Notice that, other than the
nromal arcs, only two different types of input arcs are
employed in this example, i.e., an inhibitor arc and a
static test arc. By applying the proposed transformation
procedure, the backward Petri nets in Figure 2a and b
can be generated. These nets can be viewed as the road
maps for reasoning deductively from a given conse-
quence p9 to the root causes represented by the places
p1-p5.

4. Time-Stamped Fault Trees

A fault tree is a graphical system model. In essence,
such a graph can be regarded as an accurate represen-
tation of the deductive reasoning process in fault
identification. This is true because all logical inter-
relationships of the basic and intermediate events
leading to the given top event can be clearly depicted
in a tree.

Two basic types of logic gates, i.e., OR gates and AND
gates, are used in a typical fault tree. Any other gate
can be replaced by a proper combination of these two.
In this study, a fault tree is developed layer-by-layer
on the basis of the backward Petri net. The general two-
layer fault-tree structure associated with an input place
and its outputs in a BPN model can be found in Figure
3. The output of this fault-tree structure in the upper
layer is the event represented by placing a token (or
tokens) in the input place. On the other hand, the lower-
layer events in the general structure can be simulated
by firing the enabled transitions and then inserting
tokens in the output places.

The key step in developing a particular two-layer
fault-tree structure involves the identification of the
actual number of AND gates connected to the OR gate
and also of the input events connected to each AND
gate. In this paper, two simple construction rules are
employed for these purposes:

OR-Gate Rule. Identify a place that enables one or
more transitions in the backward Petri net. Connect an
OR gate to the output event associated with this place.

The number of AND gates connected to the OR gate
should be the same as the number of transitions enabled
by the identified place.

AND-Gate Rule. Establish a one-to-one correspon-
dence between the enabled transitions and the AND
gates obtained with the OR-gate rule. Fire these enabled
transitions simultaneously. The input events of each

Figure 1. Forward Petri net.

Figure 2. Backward Petri net obtained from Figure 1 for (a) w1
) 2 and (b) w1) 1.

Figure 3. General fault-tree structure.

2706 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

AND gate can be characterized by the token numbers
in the output places of the corresponding transition.

In a conventional fault-tree representation, the causal
relations among top, intermediate, and basic events are
not expressed explicitly as functions of time. However,
for the purpose of identifying fault propagation mech-
anisms in sequential operations, it is necessary to mark
the occurrence time of each event in the fault tree. It
should be noted that a set of time stamps can be
systematically generated by executing the backward
Petri net. Initially, a definite time can be assigned to
the top event. The time stamp of each intermediate (or
basic) event in the lower layer can be calculated by
subtracting the time delay of the fired transition from
the time stamp of the event in the upper layer. This
calculation can be repeated until all events in the fault
tree are marked with time stamps. For illustration
purposes, let us consider the backward Petri net in
Figure 2a as an example. It can easily be found that
the proposed techniques can be used to synthesize the
corresponding fault tree in Figure 4a.

As mentioned previously, an event in a fault tree can
be represented by introducing a token (or tokens) into
the corresponding place in the Petri net. An empty place
is interpreted as the nonoccurrence of event(s) associ-
ated with the place under consideration. Because a place
without tokens cannot enable any of its output transi-
tions, the above two fault-tree construction rules are
really not applicable. However, if inhibitor arcs are used
in building the system model, then at least one of the
corresponding BPNs should contain arcs with zero
weights. This special feature can be found in Figure 2b.
In this situation, the negation of p7(1), i.e., p7(0), is
actually a sufficient condition for the occurrence of p9-
(1). Thus, there is a need to pinpoint the root causes

that nullify the prerequisite for inhibiting a transition
in the FPN model. This task can be achieved by
developing a complementary subtree for the precondition
of each inhibitor arc. A brief description of the subtree
development techniques is given below.

Notice that, if the system model is built with the
approach suggested by Wang and Chang,16 then a place
in the FPN always represents a discrete value of either
an equipment state or a process condition. Depending
on the modeling needs, multiple places can be used to
reflect different values of the same state or condition.
If the place under consideration is used to represent the
only value of a state or condition needed in the system
model, then the corresponding event should be used as
the top event to develop a preliminary subtree, and then
logical negation operation should be applied to generate
the required complementary subtree on the basis of
DeMorgan’s theorem. Specifically, the following two
steps should be carried out in sequence:

Subtree Construction, Identify a zero-weight arc
in the backward Petri net. Insert a token at its output
place. Apply the OR-gate and AND-gate rules repeat-
edly to build a preliminary subtree.

Negation Operation. Change every OR gate in the
preliminary subtree into an AND gate and vice versa.
Replace all events with their negation events.

If this two-step procedure is followed to develop the
subtree associated with p7(0), then the complete fault
tree presented in Figure 4b can be easily obtained. On
the other hand, if more than one place is employed in
the FPN to represent several different values of a state/
condition, then the development of a complementary
subtree is even more straightforward. The negation
event associated with the place under consideration can
simply be attached with an OR gate. The input events
of this gate can be obtained by inserting a token in each
of the places denoting other values of the same state or
condition. The subtree can then be developed accord-
ingly on the basis of the standard OR-gate and AND-
gate rules.

5. Modified State Equation

As mentioned before, the backward Petri net is used
in this work as a bookkeeping device in the deductive
reasoning process. Although a BPN is intuitively easy
to comprehend, it is not suitable for computer manipu-
lation. Thus, a modified version of the state equation20

is used instead for the purpose of monitoring token flows
in synthesizing a fault tree. Specifically, this equation
can be written as

where uk is a column vector whose entries are binary
numbers such that a 1 at the jth position indicates that
transition j should be fired at the kth firing, whereas a
0 means otherwise; mk is a column vector whose ith
entry is the token number in place i; and B is a place-
to-transition incidence matrix. A negative integer at the
(i, j)th position of matrix B represents the negative
value of the weight of an arc from the ith place to the
jth transition. A positive integer at the (i, j)th position
denotes the weight of an arc from the jth transition to
the ith place. If the weight of a transition-to-place arc
in the BPN is zero, a very small positive number ε (0 <
ε , 1) is assigned to the corresponding entry in the

Figure 4. Time-stamped fault trees generated from (a) Figure
2a and (b) Figure 2b.

mk+1) mk + Buk k) 0, 1, 2, ... (1)

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2707

incidence matrix. Finally, only one possibility is associ-
ated with a zero entry, i.e., the corresponding arc does
not exist at all.

Notice that the fault-tree construction rules can be
implemented in sequence on the basis of the modified
state equation. In particular, a specific version of the
two-layer structure given in Figure 3 can be created
after eq 1 has been executed exactly once. From the
definition given above, it is clear that the current
locations of tokens in a BPN are recorded in the vector
mk. This vector is referred to as a system marking in
the present paper. The application of OR-gate and AND-
gate rules can be equivalently described with the firing-
induced token flows from the current marking mk to a
future marking mk+1. To apply the OR-gate rule, it is
necessary to identify a place in the current marking that
enables at least one transition and also to identify these
enabled transitions. To use the AND-gate rule, it is
necessary to determine the output places connected to
each of the enabled transitions and also to determine
the token numbers in these places after firing. All of
these tasks can be accomplished by implementing an
algorithm developed on the basis of the modified state
equation (see algorithm A in Appendix I).

The fault-tree construction rules can obviously be
implemented repeatedly until none of the transitions
in the backward Petri net are enabled. However, if the
BPN contains zero-weighted arcs, the final marking
obtained with the above approach might contain small
positive numbers, i.e., ε. These entries must be devel-
oped further to produce the complementary subtrees.
For illustration purpose, let us again consider the BPNs
in Figure 2a and b. Their incidence matrices can be
expressed as

where the value of x is +1 in the case of Figure 2a and
ε in the case of Figure 2b. The sequence of markings
obtained for the synthesis of the fault tree in Figure 4a
is presented in Table 3. On the other hand, the main
tree in Figure 4b can be obtained by applying algorithm
A repeatedly until the third marking (see Table 4). The
preliminary subtree can be developed simply by replac-

ing the ε value in m3 with 1 and then using the same
procedure to generate the last marking.

6. Stalled Transitions

The occurrence of an event in the fault tree can be
conveniently simulated by placing a token in the cor-
responding place in the system model. If the tree is
constructed strictly according to the proposed OR-gate
and AND-gate rules, then the implied assumption is
that the place under consideration can be reached only
by firing at least one of its input transitions in the FPN
at the occurrence time. However, it should be noted that
another possibility might have been ignored in this
reasoning process, i.e., the given place might have
acquired a token at a prior time and its output transi-
tions might have all been stalled since then. Let us
again consider the Petri net in Figure 1 as an example
and further assume that it is actually a partial version
of the net given in Figure 5a. Notice that three more
discrete places (p10-p12) and one more untimed transi-
tion t5 are included in this net. Notice also that all new
arcs are normal except for the inhibitor arc connecting
t5 and p11. It is obvious that a token can be introduced
in p8 at a given time θ* if p5 acquired one at time θ* -
2. On the other hand, it is also possible that p8 had
already obtained a token before θ* - ∆θ, where ∆θ
denotes a finite period. The requirement to keep this
token in place p8 at time θ* is to maintain either a
nonempty p11 or an empty p12 throughout the time
interval [θ* - ∆θ, θ*].

Clearly, the latter scenario in the above example
cannot be deduced if the proposed fault-tree construction
approach is applied to the original system model in
Figure 5a. To facilitate proper use of the reasoning
procedures developed previously, the original Petri net
must be first converted to the one shown in Figure 5b.
Notice that an additional discrete place (p13) and three
additional transitions (t6-t8) are introduced in this
modified net. The added transitions t6 and t7 are
untimed, but the delay time of t8 is ∆θ. The two output
arcs from p11 (and also the two from p12) are logically
complementary. In other words, the pair always consists
of a normal arc and also an inhibitor arc. Notice also
that all other added arcs are normal. Because the failure
modes caused by the stalled transitions are now incor-
porated in the modified net as a substructure connecting
to p8 with its input transition t8, the findings generated
with the proposed reasoning procedure should be com-
prehensive.

An important conclusion can be drawn from the above
example, that is, as long as the place under consider-
ation is connected (with a normal or weighted arc) to
one or more output transitions having other places as
inputs, the same technique should be employed to

Table 3. Marking Record in Synthesizing the Fault Tree
in Figure 2a

k:
enabled transitions:

0
t4

1
t1

2
t2

3
t3

4
-

p1 0 0 1 1 1
p2 0 0 1 1 1
p3 0 0 0 1 1
p4 0 0 0 1 1
p5 0 0 0 0 1
p6 0 1 0 0 0
p7 0 1 1 0 0
p8 0 1 1 1 0
p9 1 0 0 0 0

B) [+1 0 0 0
+1 0 0 0
0 +1 0 0
0 +1 0 0
0 0 +1 0
-1 0 0 +1
0 -1 0 x
0 0 -1 +1
0 0 0 -1

] (2)

Table 4. Marking Record in Synthesizing the Fault Tree
in Figure 2b

k:
enabled transitions:

0
t4

1
t1

2
t3

3
-

3
t2

4
-

p1 0 0 1 1 1 1
p2 0 0 1 1 1 1
p3 0 0 0 0 0 1
p4 0 0 0 0 0 1
p5 0 0 0 1 1 1
p6 0 1 0 0 0 0
p7 0 ε ε ε 1 0
p8 0 1 1 0 0 0
p9 1 0 0 0 0 0

2708 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

generate a complete listing of all possible failure mech-
anisms. This type of place can often be found in the
proposed FPN models. In particular, the equipment
states are usually described by multiple places, and the
steps of operation are always represented by transitions
interconnecting them.16 As a result, the model modifica-
tion routine described here is, in fact, an indispensable
task in the PN-based fault identification procedure.
Finally, it should be noted that the dead time of the
time-delayed transition in the attached substructure,
e.g., t8 is Figure 5b, must be specified in actual applica-
tions. A selection criterion for these time delays is given
in the following section after the method for discretizing
the time horizon has been properly explained.

7. Fault Identification Procedure

Our fault identification procedure can be summarized
with the flowchart given in Figure 6. Instead of provid-
ing a detailed description, a simple example is used here
to illustrate this procedure. Let us consider the mixing
process depicted in Figure 7. Here, the desired product
is produced in tank 3 by mixing raw materials stored

in the other two tanks. Initially, the amount of liquid A
in tank 1 is 1 m3, and the amount of liquid B in tank 2
is 2 m3. The mixing operation begins when both valve
V1 and valve V2 are opened by an operator. The
operator is instructed to close valve V2 whenever tank
1 is empty or vice versa. It is assumed that tank 1 can
be emptied in 1 h and tank 2 in 2 h.

The results obtained by implementing each step of
the fault identification procedure are provided in the
following paragraphs.

(i) Setting the Time Horizon for Fault Identifi-
cation. To avoid generating an excessively large list of
insignificant scenarios, the scope of fault identification
must obviously be limited. For a noncyclic batch process
such as the one presented here, only the faults or
failures occurring during the planned operating period
are considered to be the candidate causes of an undesir-
able condition in the final product. In the present
example, this planned production period is 1 h given
that operation should be terminated when tank 1 is
emptied. On the other hand, if the batch operation is
cyclic in nature, the time horizon is restricted only to

Figure 5. (a) Original and (b) modified system Petri nets.

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2709

one complete cycle prior to the consequence under
investigation.

(ii) Discretizing the Time Horizon and Continu-
ous States. Notice that implementing any operating
step in a recipe should always cause a change (or
changes) in the equipment state(s) of one or more
process units. The main objective of this step is to ensure
that all such changes can be properly modeled in a Petri
net. Thus, the time horizon is classified into several
distinct time periods according to the completion times
of operating steps, and the value of each continuous
variable is discretized into several ranges in such a way

that the equipment state of any unit can be uniquely
characterized in each time period. In particular, the
value of a continuous variable in each time period is
qualitatively treated as one level (range) and repre-
sented by a discrete place. As the number of steps in
the operation increases, the numbers of time periods
and qualitative levels (places) required to describe the
corresponding changes in state certainly increase as
well. On the other hand, it should also be noted that
only a few continuous variables are needed to describe
the state of a process unit. Because the number of units
in a realistic batch process and the number of steps in
its operating recipe are both finite, it is our belief that
the size of the corresponding Petri net will still be
manageable with a computer in fault identification
applications.

Let us now consider the mixing process. The entire
time horizon can be regarded as one period because only
one action, i.e., closing V2, is performed during normal
operation. More specifically, the time interval 0 e θ <
1 is defined as period 1 in our analysis. The periods
before and after the normal operation, i.e., θ < 0 and θ
> 1, are referred to as periods 0 and 2, respectively. Let
us next use the symbol Q to represent the liquid volume;
this continuous variable can be qualitatively assigned
to three discrete values, i.e., (1) value 0 (Q) 0), (2) value
1 (1 g Q > 0), and (3) value 2 (2 g Q > 1). Finally, notice
that the instance of an operating action (i.e., θ) 1) is
not included in any of the periods. This practice is used
to avoid ambiguity in describing the transition process
between two discrete states.

(iii) Building the System Model. As mentioned
previously, a procedure for constructing the system
model has already been developed by Wang and Chang.16

The same approach is followed here.
The batch operation in Figure 7 can be modeled with

the FPN shown in Figure 8. Notice that, for simplicity,
this model only contains components in the first three
levels of the hierarchy shown in Table 1. The first-level
component is the operator. For simplicity, only the two
planned operating steps performed after the opening of
valaves V1 and V2 are modeled here. The places PC(1)
and PC(2) are used to represent the operating com-
mands to close V1 and V2, respectively. The equipment
states of V1 (and V2) in the second level can be described
with two discrete places representing the open and
closed positions, respectively. Two types of valve failures
are considered in this example, i.e., sticking and failing
to close. The corresponding failure models are also
included in this Petri net. If a token is introduced in
the place representing the event “valve sticking”, this
token should disable a transition representing the action
of changing the valve position. The corresponding token
is therefore locked in its input place. On the other hand,
if a valve is originally open and the event “valve failing
to close” occurs during operation, such a failure always
moves the token from the place representing the open
position to the other place denoting the opposite valve
state. The tanks in this example are the third-level
components. To characterize their equipment states, the
stored liquid volumes are described with discrete places
representing three qualitative values, i.e., 0, 1, and 2.
Notice that the dead times of all time-delayed transi-
tions are set to 1 h. Finally, the possibility of sensor
failure is excluded in this example, and the sensor
measurements are assumed to be identical to the
equipment states of tanks 1 and 2.

Figure 6. Fault identification procedure.

Figure 7. Process flow diagram of a mixing process.

2710 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

In this example, it is assumed that the desired ratio
of A/B in the product is 1 and also that the flow rates
from the two feed tanks are the same as long as neither
of them is empty and both V1 and V2 are open. Thus,
it can be deduced that an off-specification product can
be produced after the end of operation only if the final
volumes in tanks 1 and 2 are not normal. Specifically,
the undesirable consequence might be the direct result
of the following conditions: (a) The liquid volumes in
tanks 1 and 2 are both 1. (b) The liquid volumes in tanks
1 and 2 are 0 and 2, respectively. (c) The liquid volumes
in tanks 1 and 2 are both null (value 0).

(iv) Simulating Normal Operation. The equipment
states and process conditions of all components at
different stages of the normal operation should be
simulated by executing the system model. For our
example here, let us start from an initial marking given
in Figure 8. The results presented in Table 5 can be
obtained by firing the enabled transitions sequentially.

(v) Generating the Backward Petri Net. Before
converting the system model to the backward Petri net,
it is necessary to identify places in the forward net to
which further modifications must be introduced. This
task can be achieved by comparing the local net con-
figuration of a candidate place with Figure 5a. If a
match is confirmed, the FPN model should be modified
by attaching one or more substructures to this place
according to Figure 5b. The time delays in these
substructures should be selected in such a way that
failures causing the stalled transition(s) could occur in
every discretized time period prior to the period under
consideration. Only after all required modifications have
been introduced into FPN can the backward Petri net
be produced accordingly by following the conversion
procedure described in section 3.

From the system model shown in Figure 8, it can be
observed that there are five candidate places, i.e., (1)
tank 1 value 1, (2) V1 open, (3) tank 2 value 2, (4) tank
2 value 1, and (5) V2 open. This forward net can be
modified by attaching five corresponding substructures
to these candidate places. Further, because the desig-
nated consequence is in period 2 and there is only one
period during operation, the time delays in these
substructures are all set to be 1 h, i.e., the length of
period 1. The resulting BPN can be found in Figure 9.

(vi) Synthesizing the Time-Stamped Fault Trees.
The timed-stamped fault tree of a given BPN can be
constructed according to algorithm B (see Appendix II).
Notice that, in implementing this algorithm, a set of
termination conditions is employed (in step 3) to reduce
the repetitive effort invested in the deductive reasoning
process. These conditions should be checked every time
a specific version of the two-layer fault-tree structure
is created. A summary of these conditions can be found
in Appendix III.

Figure 8. System Petri net of a mixing process.

Table 5. Detailed Simulation Results of Normal
Operation for the Mixing Example

place period 1 period 2 period 3

tank 1 value 1 1 0 0
tank 1 value 0 0 1 1
V1 open 1 1 1
V1 closed 0 0 0
V1 sticking 0 0 0
V1 failing to close 0 0 0
PC(1) 0 0 0

tank 2 value 2 1 0 0
tank 2 value 1 0 1 1
tank 2 value 0 0 0 0
V2 open 1 0 0
V2 closed 0 1 1
V2 sticking 0 0 0
V2 failing to close 0 0 0
PC(2) 0 0 0

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2711

The time-stamped fault tree of the mixing process was
synthesized automatically with a simple MATLAB
program coded on the basis of algorithm B. The data
format of its output can be found in Table 6. It is clear
that a fault tree can be unambiguously drawn according
to such output data (see Figure 10). Notice that a
number of branches are severed from the fault tree. For
example, the basic events “tanks 2 value 2 in period 0”
and “V2 open in period 0” can be removed on the
grounds that the occurrence times of these events exceed
the given horizon in this work., i.e., the fourth termina-
tion condition is satisfied in this case. The other
branches are eliminated on the basis of the AND logic.

(vii) Identifying the Minimal Cut Sets. From the
fault tree shown in Figure 10, the causes of the top event
can be clearly identified, i.e., “V1 failing to close in
period 1” and “V2 failing to close in period 1.” Notice
that the failure “V2 sticking in period 1” is not included
in the fault tree. This is reasonable given that the time
horizon in the present case ends at the time of the valve-
closing action, i.e., 1 h. In other words, the correspond-
ing off-specification product can only be produced after
the scheduled completion time of the batch process. If
a waiting period (say, 0.5 h) is added to the operatng
procedure, then a minimal cut set involving V2 sticking

can also be obtained with the proposed fault identifica-
tion procedure.

8. Application

A realistic example involving an air-drying process
is presented here to demonstrate the feasibility of the
proposed procedure in practical applications. Essential
details of the implementation results are given in the
following subsections.

8.1. Process Description. Although a description of
the example process can be found in Shaeiwitz et al.,21

a brief review is provided here for the sake of complete-
ness. Figure 11 is the flow diagram of a sequential
process for drying instrument air using two fixed
alumina beds, denoted bed I and bed II. Ambient air
that contains water vapor enters the process via stream
9 and passes through one of the two beds, where the
moisture is adsorbed. The dried air leaves the system
in stream 25. To maintain a steady supply of dry air,
the above two beds are employed alternately. When one
bed is removing moisture from the inlet air, the other
is being regenerated and then cooled. Regeneration
involves passing hot air through a bed that has been
loaded to capacity with water. After the water has been

Figure 9. Backward Petri net of a mixing process.

Table 6. Output Data of the Fault-Tree Synthesis Program for the Mixing Process

off-spec product ST) [2] - OR - AND - tank 1 value 1 ST) [2] - tank 2 value 1 ST) [2] (condition 1)
- AND - tank 1 value 0 ST) [2] (condition 1) - tank 2 value 2 ST) [2]
- AND - tank 1 value 0 ST) [2] (condition 1) - tank 2 value 0 ST) [2]

tank 1 value 1 ST) [2] - OR - AND - tank 1 value 1 ST) [1] (condition 1) - NOT V1 open ST) [1]
tank 2 value 2 ST) [2] - OR - AND - tank 2 value 2 ST) [1] (condition 1) - NOT V2 open ST) [1]
tank 2 value 0 ST) [2] - OR - AND - tank 2 value 1 ST) [1] - V2 open ST) [1] (condition 1)
NOT V1 open ST) [1] - OR - AND - V1 closed ST) [1]
NOT V2 open ST) [1] - OR - AND - V2 closed ST) [1]
V1 closed ST) [1] - OR - AND - V1 failing to close ST) [1] - V1 open ST) [1] (condition 1)

- AND - NOT V1 sticking ST) [0] (condition 4) - PC(1) ST) [0-1] (condition 4) -
V1 open ST) [0] (condition 4)

V2 closed ST) [1] - OR - AND - V2 failing to close ST) [1] - V2 open ST) [1] (condition 1)
- AND - NOT V2 sticking ST) [0] (condition 4) - PC(2) ST) [0-1] (condition 4) -

V2 open ST) [0] (condition 4)
tank 2 value 1 ST) [1] - OR - AND - tank 2 value 2 ST) [0] (condition 4) - V2 open ST) [0] (condition 4)

2712 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

stripped from the alumina, the hot air flows through a
condenser where the water vapor can be removed. This
air is then recycled via the proportionating valve to the
operating bed. The hot regenerated bed is cooled with
unheated ambient air before being rotated back into
service. The same regeneration and cooling procedures
are followed for the other bed when it becomes satu-
rated. The sequential operating steps of this drying
process are executed with a timer, a three-way valve
(3W), and two four-way valves (4W-I and 4W-II). Both
beds experience the same operating cycle. Table 7 gives
the detailed recipe applied during normal operation in
a complete cycle. For convenience in illustration, it is
further assumed that emergency response procedures
simply do not exist in this case.

8.2. FPN Model. In this example, the batch process
depicted in Figure 11 is modeled with the FPN shown
in Figure 12. This model contains components in the
first three levels of the hierarchy.

The operating steps specified in a recipe are executed
sequentially by a first-level component. In general, each
operating step can be characterized in terms of two ele-
mentary actions: (1) confirmation of an initiation signal

and (2) execution of a command. In this system, the
first-level component is the timer, which can be viewed
as a device assembled with an internal clock and a con-
troller. The initiation signals are generated by the clock.
Four clock states, denoted P(1)-P(4), are described in
Figure 12. Each is associated with a time period in the
operating cycle. The places PS(i) (i) 1-4) can be
considered as the clock signals marking the switching
times of two successive operating periods. In other
words, the placement of a token in the place PS(i) can
be used to mark the beginning (or end) of an operating
period. It is assumed in this example that the elapsed
time of each operating period is the same, namely, 6 h.
Hence, the delay time associated with each transition
connecting to PS(i) is set to 6 time units. On the other
hand, the operating command issued by the controller
is always concerned with a change in the equipment
state of a second-level component. The place PC(i) (i)
1-4) is used to reflect the status of the ith operating
command. Notice that the order in which these com-
mands are issued can be arranged according to a given
recipe. In this example, two timer failures are used in
the system model, i.e., the spurious commands to 4W-I

Figure 10. Time-stamped fault tree with the top event occurring in period 2 for a mixing process.

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2713

and 4W-II. Notice from Table 7 that both four-way
valves are switched every two operating periods when
period 1 or 3 begins. It is assumed that erroneous
operating commands can be issued by the controller to
turn one or both of these valves to the wrong position-
(s) at the starting times of period 2 and 4.

The second-level components are the three-way valve
and the two four-way valves. The position of 3W
determines the route of inlet air flow for regeneration
or cooling. The fresh air can either be directed to the
heater or simply bypass it. The position of 4W-I defines
the connections between the alumina beds and their air
supplies. The air consumed in each bed can be taken
either from the system inlet or from the lower port of
the proportionating valve. The position of 4W-II governs
the destinations of the exit air flows from these two
beds, i.e., the air can be either discharged or recycled.
Every valve in this system can be switched to only two

alternative positions denoted by PV(+) and PV(-) in the
FPN model. The relationships between the valve posi-
tions and the stream connections are shown in Table 8.
Notice that the model structures for the three valves in
Figure 12 are essentially the same and there is only one
failure mode, i.e., valve sticking.

Six third-level components can be readily identified
from the P&ID given in Figure 11, i.e., the two alumina
beds, the heater, the cooler, the separator, and the
proportionating valve. In addition, joint connecting lines
16-18 can also be treated as a level-3 component, i.e.,
mixer. Aside from the adsorption beds, the conditions
of all process units should remain unchanged if none of
these units are affected by failures. Without loss of
generality, let us limit the scope of fault identification
to component failures in levels 1 and 2 only. Thus, all
component models in the third level (except those for
alumina beds) can be neglected in our analysis. The
equipment states of each alumina bed can be character-
ized in terms of two parameters, i.e., the bed tempera-
ture (denoted by T) and the water content (denoted by
M). Although these two parameters are continuous, in
each case, a set of discretized quantities is employed
here to describe the transient behaviors qualitatively.
It is assumed in this example that the main factor
controlling the bed temperature is the temperature of
incoming air. Within one time period, the hot air could
increase the bed temperature to an upper bound (value
1), and conversely, the unheated cool air could decrease
the temperature to a lower limit (value 0). On the other
hand, the water content of an alumina bed in a time
period is assumed to be affected by two factors in the
previous period, namely, (1) the temperature of the inlet
air and (2) the water content in the bed. If the bed is
unsaturated (value 0) or half-saturated (value 1), the
water content can be increased by the passing of
unheated air as long as the bed temperature is at value
0. In the former case, the unsaturated bed can reach
the saturation level (value 2) in two time periods or the
half-saturation level (value 1) in one. In the latter case,
the bed should be saturated in one time period. Because

Figure 11. Process flow diagram of a utility air-drying process.

Table 7. Operating Recipe for Fixed-Bed Air Drying
Process

valve position bed statustime
period 3W 4W-I 4W-II bed I bed II

1 11 f 12 18 f 19 20 f 21 regeneration in service
22 f 23 24 f 25

2 11 f 17 18 f 19 20 f 21 cooling in service
22 f 23 24 f 25

3 11 f 12 18 f 23 20 f 25 in service regeneration
22 f 19 24 f 21

4 11 f 17 18 f 23 20 f 25 in service regeneration
22 f 19 24 f 21

Table 8. Relationships between Valve Positions and
Stream Connections

valve valve position stream connection

3W + 11 f 12
- 11 f 17

4W-I + 18 f 19 and 22 f 23
- 18 f 23 and 22 f 19

4W-II + 20 f 21 and 24 f 25
- 20 f 25 and 24 f 21

2714 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

a saturated bed cannot be used for dehumidification
purposes, hot air should then be introduced to strip
water from the alumina. Here, it is assumed that the
bed can be dried “completely” in one time period. A
summary of the complete component model for beds I
and II can be found in Table 9. For the sake of clarity,

the component model of bed II is eliminated from the
FPN in Figure 12. However, this missing part can easily
be reconstructed according to the fourth column of Table
9.

The equipment states of a third-level component can
be monitored via measurement instruments in the

Figure 12. System Petri net of a utility air-drying process.

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2715

fourth level. However, there is no need to discuss the
component models of these instruments because they
are not used in implementing the operating Period
procedure.

8.3. Fault Identification. Let us assume that a
possible hazard for fault identification can be described
as “H2O concentration in stream 25 is too high during

time period k”, where k can be 1, 2, 3, or 4. This is
because, if the outlet air contains too much water vapor,
a large number of valuable instruments downstream
can be damaged. According to the process description,
this undesirable consequence could be directly caused
by the following conditions: (i) the temperature of the
served bed is too high, (ii) the adsorbents in the served
bed are saturated, and (iii) the inlet air temperature in
the served bed is too high. Notice that each of these
conditions can be characterized by a unique set of five
different places in the system model. Two of them are
used to represent the bed states, and the rest are for
the valve states. For example, cause ii can be described
with the set {3W PV(+), 4W-I PV(+), 4W-II PV(-),
I-T(0), I-M(2)}. The combinations of places that result
in at least one of the above three sufficient conditions
in bed I are listed in Table 10. The same combinations
can be obtained for bed II if the valve positions of 4W-I

Figure 13. Time-stamped fault tree with the top event occurring in period 1 for a utility air-drying process.

Table 9. Changes in Bed States during One Operating
Period

3W 4W-I bed I bed II

+ + I-T(0) f I-T(1) II-T(0) f II-T(0)
I-T(1) f I-T(1) II-T(1) f II-T(0)
I-M(0) f I-M(0) II-M(0) + II-T(1) f II-M(0)

II-M(0) + II-T(0) f II-M(1)
I-M(1) f I-M(0) II-M(1) + II-T(0) f II-M(2)
I-M(2) f I-M(0) II-M(2) f II-M(2)

- + I-T(0) f I-T(0) II-T(0) f II-T(0)
I-T(1) f I-T(0) II-T(1) f II-T(0)
I-M(0) + I-T(1) f I-M(0) II-M(0) + II-T(1) f II-M(0)
I-M(0) + I-T(0) f I-M(1) II-M(0) + II-T(0) f II-M(1)
I-M(1) + I-T(0) f I-M(2) II-M(1) + II-T(0) f II-M(2)
I-M(2) f I-M(2) II-M(2) f II-M(2)

+ - I-T(0) f I-T(0) II-T(0) f II-T(1)
I-T(1) f I-T(0) II-T(1) f II-T(1)
I-M(0) + I-T(1) f I-M(0) II-M(0) f II-M(0)
I-M(0) + I-T(0) f I-M(1)
I-M(1) + I-T(0) f I-M(2) II-M(1) f II-M(0)
I-M(2) f I-M(2) II-M(2) f II-M(0)

- - I-T(0) f I-T(0) II-T(0) f II-T(0)
I-T(1) f I-T(0) II-T(1) f II-T(0)
I-M(0) + I-T(1) f I-M(0) II-M(0) + II-T(1) f II-M(0)
I-M(0) + I-T(0) f I-M(1) II-M(0) + II-T(0) f II-M(1)
I-M(1) + I-T(0) f I-M(2) II-M(1) + II-T(0) f II-M(2)
I-M(2) f I-M(2) II-M(2) f II-M(2)

Table 10. Direct Causes of Undesirable Consequence
(Bed I Conditions)

conditions
set
no. places

i 1 {3W PV(+), 4W-I PV(+), 4W-II PV(-), I-T(1), I-M(0)}
2 {3W PV(-), 4W-I PV(+), 4W-II PV(-), I-T(1), I-M(0)}
3 {3W PV(+), 4W-I PV(-), 4W-II PV(-), I-T(1), I-M(0)}
4 {3W PV(-), 4W-I PV(-), 4W-II PV(-), I-T(1), I-M(0)}

ii 5 {3W PV(+), 4W-I PV(+), 4W-II PV(-), I-T(0), I-M(2)}
6 {3W PV(-), 4W-I PV(+), 4W-II PV(-), I-T(0), I-M(2)}
7 {3W PV(+), 4W-I PV(-), 4W-II PV(-), I-T(0), I-M(2)}
8 {3W PV(-), 4W-I PV(-), 4W-II PV(-), I-T(0), I-M(2)}

iii 9 {3W PV(+), 4W-I PV(+), 4W-II PV(-), I-T(0), I-M(0)}
10 {3W PV(+), 4W-I PV(+), 4W-II PV(-), I-T(0), I-M(1)}

2716 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

and 4W-II in this table are changed to the opposite
positions and all prefixes of bed states are replaced by
II.

The proposed deductive reasoning procedures can be
applied to each of the five places in all possible sets.
For example, the time-stamped fault tree corresponding
to the set {3W PV(+), 4W-I PV(+), 4W-II PV(-), I-T(0),
I-M(2)} occurring in period 1 can be found in Figure
13. The minimal cut sets of this fault tree are (1) {4W-
II sticking in period 4}, (2) {4W-II sticking in period 3},

Table 11. Root Causes of the Undesirable Consequence
Occurring in Period 1 for Bed I

set no. root causes

1 3W sticking [3] + spurious command to 4W-I [3-4] +
4W-II sticking [4]
3W sticking [1] + spurious command to 4W-I [3-4] +
4W-II sticking [4]
3W sticking [3] + 4W-II sticking [3] + spurious
command to 4W-I [3-4]
3W sticking [1] + 4W-II sticking [3] + spurious
command to 4W-I [3-4]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
3W sticking [3] + spurious command to 4W-I [3-4]
3W sticking [1] + spurious command to 4W-II [1-2] +
4W-II sticking [2] + spurious command to 4W-I [3-4]

2 φ

3 φ

4 φ

5 4W-II sticking [4]
4W-II sticking [3]
spurious command to 4W-II [1-2] + 4W-II sticking [2]

6 4W-II sticking [4] + 3W sticking [4]
4W-II sticking [3] + 3W sticking [4]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
3W sticking [4]
3W sticking [2] + 4W-II sticking [4]
3W sticking [2] + 4W-II sticking [3]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
3W sticking [2]

7 4W-II sticking [4] + 4W-I sticking [4]
4W-II sticking [3] + 4W-I sticking [4]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
4W-I sticking [4]
4W-I sticking [3] + 4W-II sticking [4]
4W-I sticking [3] + 4W-II sticking [3]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
4W-I sticking [3]
spurious command to 4W-I [1-2] + 4W-I sticking [2] +
4W-II sticking [4]
spurious command to 4W-I [1-2] + 4W-I sticking [2] +
4W-II sticking [3]
spurious command to 4W-I [1-2] + spurious command
to 4W-II [1-2] + 4W-I sticking [2] + 4W-II sticking [2]

8 4W-II sticking [4] + 4W-I sticking [4] + 3W sticking [4]
4W-II sticking [3] + 4W-I sticking [4] + 3W sticking [4]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
4W-I sticking [4] + 3W sticking [4]
4W-I sticking [3] + 4W-II sticking [4] + 3W sticking [4]
4W-I sticking [3] + 4W-II sticking [3] + 3W sticking [4]
spurious command to 4W-II [1-2] + 4W-II sticking [2] +
4W-I sticking [3] + 3W sticking [4]
spurious command to 4W-I [1-2] + 4W-I sticking [2] +
4W-II sticking [4] + 3W sticking [4]
spurious command to 4W-I [1-2] + 4W-I sticking [2] +
4W-II sticking [3] + 3W sticking [4]
spurious command to 4W-I [1-2] + spurious command
to 4W-II [1-2] + 4W-I sticking [2] + 4W-II sticking [2] +
3W sticking [4]
3W sticking [2] + 4W-II sticking [4] + 4W-I sticking [4]
3W sticking [2] + 4W-II sticking [3] + 4W-I sticking [4]
spurious command to 4W-II [1-2] + 3W sticking [2] +
4W-II sticking [2] + 4W-I sticking [4]
3W sticking [2]+4W-I sticking [3] + 4W-II sticking [4]
3W sticking [2]+4W-I sticking [3] + 4W-II sticking [3]
spurious command to 4W-II [1-2] + 3W sticking [2] +
4W-II sticking [2] + 4W-I sticking [3]
spurious command to 4W-I [1-2] + 3W sticking [2] +
4W-I sticking [2] + 4W-II sticking [4]
spurious command to 4W-I [1-2] + 3W sticking [2] +
4W-I sticking [2] + 4W-II sticking [3]
spurious command to 4W-I [1-2] + spurious command
to 4W-II [1-2] + 3W sticking [2] + 4W-I sticking [2] +
4W-II sticking [2]

9 φ

10 φ

Table 12. Root Causes of the Undesirable Consequence
Occurring in Period 2 for Bed I

set no. root causes

1 3W sticking [1] + spurious command to 4W-II [1-2]
4W-II sticking [4] + 3W sticking [1]
4W-II sticking [3] + 3W sticking [1]
3W sticking [3] + spurious command to 4W-II [1-2]
3W sticking [3] + 4W-II sticking [4]
3W sticking [3] + 4W-II sticking [3]

2 spurious command to 4W-II [1-2]
4W-II sticking [3]
4W-II sticking [4]

3 3W sticking [1] + spurious command to 4W-I [1-2] +
spurious command to 4W-II [1-2]
4W-II sticking [4] + 3W sticking [1] + spurious
command to 4W-I [1-2]
4W-II sticking [3] + 3W sticking [1] + spurious
command to 4W-I [1-2]
3W sticking [3] + spurious command to 4W-I [1-2] +
spurious command to 4W-II [1-2]
3W sticking [3] + 4W-II sticking [4] + spurious
command to 4W-I [1-2]
3W sticking [3] + 4W-II sticking [3] + spurious
command to 4W-I [1-2]

4 spurious command to 4W-I [1-2] + spurious
command to 4W-II [1-2]
4W-II sticking [4] + spurious command to 4W-I [1-2]
4W-II sticking [3] + spurious command to 4W-I [1-2]

5 φ

6 3W sticking [4] + spurious command to 4W-II [1-2]
3W sticking [2] + spurious command to 4W-II [1-2]
4W-II sticking [4] + 3W sticking [4]
4W-II sticking [4] + 3W sticking [2]
4W-II sticking [3] + 3W sticking [4]
4W-II sticking [3] + 3W sticking [2]

7 4W-I sticking [4] + 3W sticking [1] + spurious
command to 4W-II [1-2]
4W-I sticking [4] + 4W-II sticking [4] + 3W sticking [1]
4W-II sticking [3] + 4W-I sticking [4] + 3W sticking [1]
4W-I sticking [3] + 3W sticking [1] + spurious
command to 4W-II [1-2]
4W-I sticking [3] + 4W-II sticking [4] + 3W sticking [1]
4W-I sticking [3] + 4W-II sticking [3] + 3W sticking [1]
3W sticking [3] + 4W-I sticking [4] + spurious
command to 4W-II [1-2]
3W sticking [3] + 4W-I sticking [4] + 4W-II sticking [4]
3W sticking [3] + 4W-II sticking [3] + 4W-I sticking [4]
3W sticking [3] + 4W-I sticking [3] + spurious
command to 4W-II [1-2]
3W sticking [3] + 4W-I sticking [3] + 4W-II sticking [4]
3W sticking [3] + 4W-II sticking [3] + 4W-I sticking [3]

8 4W-I sticking [4] + spurious command to 4W-II [1-2]
4W-I sticking [4] + 4W-II sticking [4]
4W-II sticking [3] + 4W-I sticking [4]
4W-I sticking [3] + spurious command to 4W-II [1-2]
4W-I sticking [3] + 4W-II sticking [4]
4W-I sticking [3] + 4W-II sticking [3]

9 φ

10 φ

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2717

and (3) {4W-II sticking in period 2, spurious command
to 4W-II between periods 1 and 2}. All root causes of
the designated consequence occurring in periods 1-4
can be identified in a similar fashion, and the results
are summarized in Tables 11-14. In these tables, the
occurrence periods or instances of the events/conditions
are specified in square brackets. It is assumed in this
example that the valve-sticking failures can occur in
each of the four time periods and that spurious com-
mands can only be issued at instances between consecu-
tive periods. All identified failure mechanisms were
validated by executing the FPN model. In addition, each
fault propagation pattern can be reasoned manually to
verify the correctness of these results. Let us consider
the scenarios resulting from the failures “4W-II sticking”
occurring in periods 3 and 4 as examples, i.e., the cases
associated with rows 16 and 17 in the second column of
Table 11. Obviously, if 4W-II sticks in period 3 or 4, the
system should still behave normally during periods 3
and 4. Notice that the outlet air from bed I is scheduled
to be recycled to the cooler in period 1 of the next cycle.
However, as a result of the 4W-II failure, this air is
discharged to stream 25 instead. Thus, it can be
concluded that the conditions in the fifth set of Table
11 can indeed be realized from “4W-II sticking in period
3” or “4W-II sticking in period 4”.

As mentioned before, the level-1 and level-2 compo-
nent failures reported in Tables 11-14 are only the root
causes of the abnormal bed I states listed in Table 10.
It should be noted that the undesirable consequence
“H2O concentration in stream 25 is too high” can also
be attributed to bed II conditions. The corresponding
root causes can be easily generated by subtracting two
periods from the occurrence periods listed in the second
column of Tables 11-14. Let us again consider set 5 in
Table 11 as an example to demonstrate this procedure.
The set of places causing condition ii in bed II can be

easily obtained by following the conversion techniques
described previously, i.e., {3W PV(+), 4W-I PV(-), 4W-
II PV(+), II-T(0), II-M(2)}. The occurrence period of this
set for bed II should be obtained by subtracting 2 from
the occurrence period of set 5, i.e., period 3. In the same
manner, all occurrence times of the corresponding root
causes can be generated from the occurrence periods and
instances listed in the second column of Table 11. In
other words, the corresponding cut sets are (1) {4W-II
sticking in period 1}, (2) {4W-II sticking in period 2},
and (3) {4W-II sticking in period 4, spurious command
to 4W-II between periods 3 and 4}.

Finally, notice that the advantages of the proposed
Petri-net-based approach can be clearly observed from
a comparison between the above results and those
obtained with digraphs. Specifically, the fault propaga-
tion scenarios identified by Shaeiwitz et al.21 are limited
to only the cases in which the basic and top events occur
in the same operating period. In other words, the
possibilities of earlier failures causing the designated
consequence in a later time period (or cycle) are not
considered in the conventional fault-tree analysis. This
restriction can be successfully removed with Petri nets
according to the approach described in the present work.

9. Conclusions

A systematic deductive reasoning procedure is pre-
sented in this paper to identify all possible causes of
system hazards in sequential operations. This procedure
is carried out on the basis of the backward Petri nets
transformed from the original system model. The cor-
responding fault trees can also be constructed accord-
ingly to represent the deduction process. From the
results obtained in the application example, it can be
observed that the proposed approach can indeed be used
for the design of computer programs to automate the
cause-finding operation in hazard analysis.

Acknowledgment

This work is supported by the National Science
Council of the ROC government under Grant NSC91-
2214-E-006-013.

Table 13. Root Causes of the Undesirable Consequence
Occurring in Period 3 for Bed I

set no. root causes

1 3W sticking [1] + 4W-I sticking [1]
3W sticking [1] + 4W-I sticking [2]
spurious command to 4W-I [3-4] + 4W-I sticking [4] +
3W sticking [1]
3W sticking [3] + 4W-I sticking [1]
3W sticking [3] + 4W-I sticking [2]
3W sticking [3] + spurious command to 4W-I [3-4] +
4W-I sticking [4]

2 φ

3 3W sticking [1]
3W sticking [3]

4 φ

5 φ

6 3W sticking [4] + 4W-I sticking [1]
3W sticking [4] + 4W-I sticking [2]
spurious command to 4W-I [3-4] + 3W sticking [4] +
4W-I sticking [4]

7 4W-I sticking [3]
7 4W-I sticking [4]

8 3W sticking [4]
4W-I sticking [4] + 3W sticking [2]
4W-I sticking [3] + 3W sticking [2]

9 4W-I sticking [1]
4W-I sticking [2]
spurious command to 4W-I [3-4] + 4W-I sticking [4]

10 φ

Table 14. Root Causes of the Undesirable Consequence
Occurring in Period 4 for Bed I

set no. root causes

1 4W-I sticking [2] + 3W sticking [3]
4W-I sticking [1] + 3W sticking [3]
3W sticking [1] + 4W-I sticking [2]
3W sticking [1] + 4W-I sticking [1]

2 4W-I sticking [2]
4W-I sticking [1]

3 φ

4 φ

5 φ

6 3W sticking [4] + 4W-I sticking [2]
3W sticking [4] + 4W-I sticking [1]

7 4W-I sticking [4] + 3W sticking [3]
4W-I sticking [4] + 3W sticking [1]

8 4W-I sticking [4]
3W sticking [4]

9 3W sticking [1] + spurious command to 4W-I [3-4]

10 3W sticking [3] + spurious command to 4W-I [3-4]

2718 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

Appendix I: Algorithm A

1. Let flag) 0.
2. Select a positive entry in the current marking mk

(say, mi). IF all positive entries in mk have been
examined and flag) 0, then stop.

3. Select a column vector of B (say, bj) with a negative
entry bij at the corresponding position. If none can be
found and flag) 0, then return to step 2. If none can
be found and flag) 1, then go to step 6.

4. If mi < -bij, then return to step 3. If mi g - bij,
then the transition associated with bj is enabled. The
output places of this transition are those corresponding
to the positive entries in bj. Let flag) 1.

5. Repeat steps 3 snd 4.
6. A firing vector uk can be assembled by placing

values of 1 in the entries corresponding to the enabled
transitions and values of 0 otherwise.

7. Compute the entries of future marking mk+1
according to eq 1. The resulting token numbers in the
output places of the fired transitions can be found in
mk+1.

Appendix II: Algorithm B

1. Let k) 0. Write down the top event of the fault
tree with a time stamp. Generate the corresponding
marking mk.

2. Perform algorithm A to determine mk+1. Generate
a specific two-layer fault-tree configuration accordingly.
Compute the occurrence times of its input events.

3. Check each new positive entry of mk+1. Replace
those that satisfy the termination conditions (see Ap-
pendix III) with values of 0. Let k) k + 1 and then mf
) mk.

4. Repeat steps 2 and 3 until algorithm A is not
applicable. The resulting fault tree is referred to as the
main tree.

5. If all entries in mf are integers, then the fault-tree
synthesis process can be terminated. Otherwise, go to
the next step.

6. Select a value ε in mf. If the corresponding place
in the FPN is used to represent the only value of a state
or condition, replace it with 1 and go to step 7.
Otherwise, replace it with 0 and also replace the entries
denoting the other values of the same state/condition
with values of 1. Go to step 8.

7. Let mk) mf. Repeat steps 2 and 3 to develop a
preliminary subtree. Perform the negation operation on
the preliminary subtree to produce the complementary
subtree. Go to step 9.

8. Let mk) mf. Use the events associated with the
values of 1 in the marking as top events and repeat
steps 2 and 3 to develop the corresponding preliminary
subtrees. Connect these top events as inputs to an OR
gate to build the resulting complementary subtree.

9. Attach the complementary subtree to the main tree.
10. Repeat steps 6 and 9 until all ε’s have been

exhausted.

Appendix III: Termination Conditions

1. Normal Events. A time-stamped input event in
the two-layer fault-tree structure might be a condition
occurred during normal operation. In this work, it is

assumed that a normal state cannot be caused by any
combination of faults and/or failures. Consequently,
there is no need to construct the fault tree further from
this event.

2. Repetitive Events. If multiple events are char-
acterized by the same condition and time stamp, then
only one of them should be developed further.

3. Impossible Events. If the occurrence possibility
of a specific time-stamped event can be ruled out from
the outset, then this event should be removed from the
fault tree.

4. Time Stamps Beyond the Horizon. Because
failures or faults initiating beyond the time horizon are
not considered in this work, input events with time
stamps exceeding the given horizon must all be removed
from the fault tree.

5. Mutually Exclusive Events. If mutually exclu-
sive events under an AND gate are discovered, the AND
gate should be eliminated.

6. Supersets. If the input events under one AND gate
comprise a subset of those under another in the two-
layer fault-tree structure, the latter AND gate should
be removed altogether.

Literature Cited

(1) Lapp, S. A.; Powers, G. J. Computer-aided synthesis of fault-
trees. IEEE Trans. Reliab. 1977, R-26, 2.

(2) Chang, C. T.; Hwang, H. C. New development of the
digraph-based techniques for fault-tree synthesis. Ind. Eng. Chem.
Res. 1992, 31, 1490.

(3) Kumamoto, H.; Henley, E. J. Safety and reliability synthesis
of systems with control loops. AIChE J. 1979, 20, 376.

(4) Kelly, B. E.; Lees, F. P. The propagation of faults in process
plants: 1. Modeling of fault propagation. Reliab. Eng. 1986, 16,
3.

(5) Kelly, B. E.; Lees, F. P. The propagation of faults in process
plants: 2. Fault tree synthesis. Reliab. Eng. 1986, 16, 39.

(6) Vaidhyanathan, R.; Venkatasubramanian, V. HAZOP Ex-
pert: An Expert System for Automating HAZOP Analysis. Process
Saf. Prog. 1996, 15 (2), 80.

(7) Vaidhyanathan, R.; Venkatasubramanian, V. A Semi-
Quantitative Reasoning Methdology for Filtering and Ranking
HAZOP Results in HAZOP Expert. Reliab. Eng. Syst. Saf. 1996,
53, 185.

(8) Kuo, D. H.; Hsu, D. S.; Chang, C. T.; Chen, D. H. Prototype
for integrated hazard analysis. AIChE J. 1997, 43, 3 (6), 1494.

(9) Allen, D. J.; Rao, M. S. M. New Algorithms for the Synthesis
and Analysis of Fault Trees. Ind. Eng. Chem. Fundam. 1980, 19,
79.

(10) Andrews, J. D.; Morgan, J. M. Application of Digraph
Method of Fault Tree Construction to Process Plant. Reliab. Eng.
1986, 14, 85.

(11) Chang, C. T.; Hwang, K. S. Studies on the Digraph-based
Approach for Fault-Tree Synthesis 1. The Ratio-Control Systems.
Ind. Eng. Chem. Res. 1994, 33, 1520.

(12) Chang, C. T.; Hsu, D. S.; Hwang, D. M. Studies on the
Digraph-based Approach for Fault-Tree Synthesis 2. The Trip
Systems. Ind. Eng. Chem. Res. 1994, 33, 1700.

(13) Srinivasan, R.; Venkatasubramanian, V. Automating
HAZOP analysis of batch chemical plants: Part I. The knowledge
representation framework. Comput. Chem. Eng. 1998, 22 (9), 1345.

(14) Srinivasan, R.; Venkatasubramanian, V. Automating
HAZOP analysis of batch chemical plants: Part II. Algorithms
and application. Comput. Chem. Eng. 1998, 22 (9), 1357.

(15) Wang, Y. F.; Wu, J. Y.; Chang, C. T. Automatic Hazard
Analysis of Batch Operations with Petri Nets. Reliab. Eng. Syst.
Saf. 2002, 76 (1), 91.

(16) Wang, Y. F.; Chang, C. T. A Hierarchical Approach to
Construct Petri Nets for Modeling the Fault Propagation Mech-
anisms in Sequential Operations. Comput. Chem. Eng. 2003, 27
(2), 259.

Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004 2719

(17) Peterson, J. L. Petri Net Theory and the Modeling of
Systems; Prentice Hall: Englewood Cliffs, NJ, 1981.

(18) David, R.; Alla, H. Petri net for modeling of dynamic
systemssA survey. Automatica 1994, 30 (2), 175.

(19) Ramchandani, C. Analysis of Asynchronous Concurrent
Systems by Petri Nets; Project MAC, TR-120; Massachusetts
Institute of Technology: Cambridge, MA, 1974.

(20) Murata, T. Petri nets: Properties, analysis and applica-
tions. Proc. IEEE 1989, 77 (4), 541.

(21) Shaeiwitz, J. A.; Lapp, S. A.; Powers, G. J. Fault Tree
Analysis of Sequential Systems. Ind. Eng. Chem. Process Des. Dev.
1977, 16 (4), 529.

Received for review July 29, 2003
Revised manuscript received March 19, 2004

Accepted March 23, 2004

IE034026L

2720 Ind. Eng. Chem. Res., Vol. 43, No. 11, 2004

