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A systematic strategy is presented in this paper to build Petri-net models for the biological
reaction networks and their gene regulation mechanisms in prokaryotes. Component models
are first developed to represent the cellular functional units, i.e., operons, regulons, modulons,
and individual reactions. A step-by-step procedure is then proposed to assemble these components
to form hierarchical system models. The usefulness of the proposed approach is demonstrated
with a realistic example. The model validity is shown by comparing simulation predictions with
experimental data in the literature.

1. Introduction

As a result of recent advancement in biotechnology,
it is now a popular practice to improve cellular proper-
ties via gene modification. The regulatory mechanisms
of genes can often be altered to promote the enzyme
activities, to extend metabolic reaction pathways, and/
or to create new arrays of enzymes for the production
of novel molecules. To facilitate implementation of this
approach, extensive studies have been performed in a
newly evolved research field, Metabolic Engineering.
Bailey1 suggested that its activities could be character-
ized as the improvement of cellular activities by ma-
nipulations of enzymatic, transport, and regulatory
functions of the cell with the use of recombinant DNA
technology. Numerous books and reviews have already
been published in the literature, e.g., Stephanopoulos
et al.,2 Stephanopoulos,3 Nielsen et al.,4 Lengeler,5 etc.
Generally speaking, application of the metabolic engi-
neering methods always starts with a careful analysis
of cellular functions and then an improved strain is
developed according to a given design objective.4 A large
number of examples can be found in the literature and
some of them are briefly outlined below: Porro et al.6
improved the lactic acid production process by incorpo-
rating mammalian lactate dehydrogenase in Saccharo-
myces cerevisiae through molecular modification. Flares
et al.7 isolated new Escherichia coli strains to facilitate
glucose transport without phosphoenolpyruvate (PEP).
Millard et al.8 reported enhanced succinate production
in E. coli by the overexpression of PEP carboxylase.
Finally, a microbial process was developed by Yang et
al.9 to produce indigo and propylene glycol.

It is obvious that the development of a workable
model is a key step in the analysis of any metabolic
phenotype.10 The traditional mathematical modeling
tools (i.e., the algebraic and differential equations) have

long been used in many previous studies. The fluxes
through different branches of a biochemical reaction
network can be determined on the basis of metabolite
balance2. Varma et al.11 used a flux-balance-based
formulation to study the synthesis of 20 amino acids
and four nucleotides as the products of biochemical
reactions. Also, a linear program was developed in a
separate study to determine the optimal metabolic
performance of E. coli under various oxygen limita-
tions.12 Hatzimanikatis et al.13 proposed a mixed-integer
linear programming (MILP) formulation for maximizing
the performance of a given metabolic network. On the
basis of experimental data, Lin et al.14 also adopted a
MILP model to identify the network topology of the
glucose signaling pathway in yeast and also the role of
Ras components in this network. Fell15 used metabolic
control analysis (MCA) to determine the elastic coef-
ficients in the metabolic network. A quantitative model
describing penicillin synthesis in Penicillium chrysoge-
num was used to predict the control and elasticity
coefficients.16 Ramakrishna et al.17 used flux balance
analysis (FBA) to characterize the optimal flux distribu-
tions for maximum ATP production in the mitochon-
drion. Jamshidi et al.18 developed a Mathematica ap-
plication package to perform dynamic simulation for the
metabolic network in red blood cell (RBC). Kremling et
al.19-21 constructed equation-based software for analyz-
ing the biochemical reaction networks with control
mechanisms. In this software, each cellular activity is
characterized as a functional unit and each unit is
modeled with a set of mathematical equations. Finally,
Schuster et al.22 proposed a decomposition algorithm for
analyzing the metabolic network pathways.

The main drawback of equation-based models is that
they are not suitable for describing discrete events in
the gene regulation processes.For example, according
to the well-established mechanism of inducible expres-
sion, the transcriptional activity is turned on in the
presence of inducer and off if otherwise. In addition,
although the kinetic parameters in the rate equations
of many metabolic reactions are readily available in the
literature, most gene transcription and translation
processes can only be described qualitatively. A graphi-
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cal modeling tool, Petri net (PN), has thus been adopted
as an alternative in some of the studies reported in the
literature. As they were originally designed, the Petri-
net models are most suitable for describing the discrete-
event systems. Furthermore, one of the critical features
of Petri net is its natural support for integrating a mix
of quantitative and qualitative component models.
Under the condition that some of the needed kinetic
data for numerical simulation are missing, such a
hybrid system model is believed to be more mechanisti-
cally sound when compared with the empirical correla-
tions often adopted in the traditional modeling ap-
proach. Thus, although the predictions of this model
may not be quantitatively accurate, they can be useful
for validating a hypothesized mechanism and/or direct-
ing possible future experiments. Finally, to construct a
comprehensible model of the gene regulation mecha-
nisms, it is important not only to establish the unsteady-
state material balances of proteins and metabolites but
also to explicitly express the causal relationships be-
tween conditions and events in the system. To this end,
the Petri nets are well equipped to depict a precise
picture of these relationships in a complex metabolic
network.

There have been many attempts in the past to use
the Petri nets to model various metabolic systems.
Reddy et al.23 tried to treat the biochemical reaction
networks as discrete-event systems. In their Petri-net
model, the places denote the states of metabolites and
transitions represent chemical reaction steps. Since only
the stoichiometry of the reaction system is described,
their analysis was limited to the qualitative aspects of
the metabolic phenotype. Hofestädt and Thelen24 ex-
tended this pioneering work by incorporating quantita-
tive kinetic data with the continuous places in a hybrid
Petri net. The token number in a continuous place
represents the actual concentration of a metabolite, and
the weight on the input or output arc of a transition
represents the corresponding reaction rate. Koch et al.25

also studied the pentose phosphate reaction cycle using
a time-dependent Petri net, while Genrich et al.26

proposed to use Petri-net models for the analysis of
biochemical pathways. In addition to the studies on
reaction dynamics, the Petri nets can also be used to
describe the gene regulation mechanisms. Goss and
Peccoud27 proposed a stochastic Petri-net model for the
protein synthesis process. Matsuno et al.28 also devel-
oped a hybrid Petri net for the same purpose. The states
of RNA polymerases were represented with discrete
places, and those of enzymes and mRNAs with continu-
ous places. The production and degradation rates of each
protein are described with two separate continuous
transitions. Although the Petri-net models developed in
this work are quite useful, their model construction
procedure is mostly ad hoc in nature. It is thus difficult
for a novice to build a suitable model for new applica-
tions. Also, since the inherent hierarchical framework
of signal flows in a cellular system is not clearly
reflected in their model, their Petri nets cannot be easily
read and understood. Finally, it should be noted that
the collection of component models in this work is far
from comprehensive. For example, Petri nets represent-
ing various functional units in prokaryotes, such as the
modulons, regulons, and repressible operons, are ig-
nored completely.

To facilitate the application of metabolic engineering
methods, an integrated PN model is clearly required to

predict the effects created by any change in the gene
regulation behaviors. Although a good amount of studies
on modeling of the gene regulated metabolic phenotype
can be found in the literature,29 the task of model
construction at the present stage is still considered to
be an art. The objective of the present investigation is
thus to develop a systematic procedure to assemble a
Petri net for modeling both the metabolic reactions and
their regulatory mechanisms in any cell. To better
illustrate the proposed model building procedure, the
scope of the present paper is limited to the metabolic
phenotype in prokaryotes. It should be emphasized that
the same approach can be extended to eukaryotes as
well.

The remainder of this paper is organized as follows.
The basic elements of Petri nets are presented in the
next section. A following section is used to describe the
hierarchical cellular functions of biochemical processes
in prokaryotes. Various metabolic reaction mechanisms
and the corresponding Petri nets are discussed in
section 4. The next section is concerned with the unit
models of transportation processes across cell mem-
brane. Different types of operons and their Petri-net
models are then described in section 6. In the following
section, the Petri-net models of two remaining func-
tional units, i.e., modulon and regulon, are developed
in detail. The frameworks of the Petri-net objects are
then illustrated in section 8. A systematic procedure for
constructing the hierarchical Petri net on the basis of
the unit models is presented in the ninth section. The
model modification techniques for simulating the effects
of gene modification and also the potentially useful
information generated with the resulting Petri net are
explained with a realistic example in the next section.
Finally, to validate the proposed system models, the
simulation predictions are compared with experimental
data in the literature.

2. Basic Elements in Petri Nets

A formal mathematical description of the ordinary
Petri net can be found in Peterson.30 For the sake of
brevity, only a condensed version is provided here. As
originally designed, the ordinary Petri net consists of
only three types of elements, i.e., places, transitions, and
arcs. The state of a discrete-event system is basically
reflected with a marking, i.e., a vector of token numbers
in all places of the corresponding net. Since only the
discrete places are considered in the original Petri net,
this vector contains only positive integers and/or zeros.
The token movement is realized by enabling and then
firing the transitions. A transition is enabled if the token
number in every input place is larger than or equal to
the weight on the corresponding place-to-transition arc.
After firing the transition, tokens are removed from
their input places and then introduced into the output
places. The number of decreased or increased token(s)
in each place is the weight on the arc connecting to the
fired transition. It should be noted that the only allowed
weight in the ordinary Petri net is 1 and all the
transitions are without time delay. To facilitate proper
representation of the metabolic phenotype, several
special extensions of the ordinary Petri net are adopted
in this study.31,32 Specifically, both discrete and continu-
ous places are allowed and the transitions can be either
timed or nontimed in the hybrid Petri nets used in this
study. In addition, three different types of place-to-
transition arcs are utilized, i.e., the weighted arcs, the
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inhibitor arcs, and the static test arcs. Finally, it should
be noted that all transition-to-place arcs are weighted
arcs.

3. Hierarchical Structure of Cellular Functions

Recent effort to gain insights of the metabolic phe-
notype has resulted in the understanding that the
cellular functions can be structured into several distinc-
tive units.5 The classification of functional units is
originated from the needs to systematically characterize
(i) the enzymatic reaction network, (ii) its control at the
genetic level by a common regulatory network, and (iii)
the coupling of this regulatory network to the environ-
ment through a signal transduction network. It has been
well established that an extremely large number of
enzyme-catalyzed metabolic reactions can take place in
a prokaryotic cell and the needed enzymes are produced
in a wide variety of biosynthesis processes. Each enzyme-
synthesis process is regulated with a specific control
mechanism supported by various cellular functions. The
primary functional unit of the control mechanism in
prokaryotes is the operon, which consists of a set of
protein molecules (such as the inducer, repressor,
mRNA and mRNA polymerase, etc.) and segments of
DNA (i.e., the regulator, promoter, operator, structural
genes, and terminator sequence). The operons do not
function individually in isolation, but rather they are
members of a higher-level control network. More specif-
ically, an operon is regulated by a functional unit, the
regulon, and the regulatory functions of a regulon are
often activated by the biosensor signals reflecting
specific cell conditions. Furthermore, the control actions
of a group of regulons may be coordinated by another
function unit, the modulon. The modulon responds to
physiological states of the cell environment such as the
pH value, carbon dioxide and nitrogen concentrations,
etc.2

Bozinovski et al.33 proposed a flexible manufacturing
system (FMS) metaphor as an alternative means for
characterizing the biosynthesis processes. These authors
developed the analogies between cellular functions and
manufacturing system agents and proposed a unified
control framework accordingly for studying both biologi-
cal and human-made autonomous flexible manufactur-
ing systems. On the basis of the FMS analogy, each
biosynthesis process can be viewed as a “recipe” for the
production of a specific metabolite. For example, an
inducible enzyme is produced if the concentration of a
reaction product is low and/or that of the substrate is
high. In other cases, the protein synthesis process may
be repressed when the required metabolite is produced
in sufficient quantity. Consequently, a systematic ap-
proach is proposed in the present investigation to
construct the Petri-net models to represent these cel-
lular functions. In particular, all cellular functions in
prokaryotes are classified into a hierarchy of four
different levels according to Table 1. The top-level
component is the modulon, which can be considered as
a host computer or a human operator in a process plant.

The functions of regulons in the second level can be
regarded as the combination of sensors, local controllers,
and/or signal transduction systems. The operons are
equivalent to the actuators, e.g., hand valves, control
valves and switches, etc. Finally, the metabolic reactions
and transport mechanisms of metabolites can be con-
sidered as the “unit operations” in this plant and
classified as level 4 components. A sketch of the signal
flows in this hierarchy is presented in Figure 1. The
general structures of Petri-net models for all functional
units listed in Table 1 are developed in the following
sections.

4. Reaction
It has been well established that Petri nets are

suitable for modeling chemical reactions.30 A single-
substrate biochemical reaction can be modeled with the
net shown in Figure 2. The concentrations of reactant,
product, and enzyme are reflected with token numbers
in the continuous places P1, P2, and P3, respectively.
Notice that the reaction step is denoted by a discrete
transition with delay time ∆t. The weights on its input
arc from P1 and output arc to P2 represent, respectively,
the amounts of reactant reacted and product produced
during the time interval ∆t. Specifically, the arc weights
can be assigned as r∆t, where r is the metabolic reaction

Table 1. Hierarchy in Petri-Net Models for Metabolic
Networks

level components

I modulon
II regulon
III operon
IV reactions and transport

Figure 1. Signal flows among the hierarchical components of a
metabolic network.

Figure 2. Petri-net representation of an elementary enzyme-
catalyzed reaction.
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rate. It is well recognized that the rates of metabolic
reactions can often be determined with the Michaelis-
Menten equation:

where CS is the concentration of the substrate, v1 is the
maximum reaction rate, and K1 is the Michaelis con-
stant. The transition in Figure 2 is enabled whenever
the token numbers in its input places are both larger
than zero. For bisubstrate reactions, a modified version
of eq 1 can be used:2

where CS1 and CS2 represent the concentrations of
substrates taking part in the reaction, v2 is the maxi-
mum reaction rate, and K21 and K22 denote the Michae-
lis reaction constants. In addition, Matsuno et al.34

modified eq 1 to incorporate the enzyme concentration
in the rate expression:

where CC represents the enzyme concentration, v3 is the
maximum reaction rate, and K3 is the reaction rate
constant.

In addition to the elementary enzymatic reactions, the
mechanisms of enzyme inhibition should also be con-
sidered in constructing Petri-net models. Three types
of mechanisms can be identified:2 (1) competitive, (2)
uncompetitive, and (3) noncompetitive. In general, the
term competitive inhibition is used to represent the
scenario when the substrate of an elementary reaction
is competing with another metabolite for an enzymatic
binding site. This interfering metabolite is referred to
as an inhibitor in this paper. It can be shown that the
maximum reaction rate in the resulting Michaelis-
Menten equation remains unchanged, but the Michaelis
constant is affected by the inhibitor concentration. On
the other hand, the catalytic behavior of an enzyme is
altered completely if the inhibition mechanism is un-
competitive and thus both the maximum rate and the
Michaelis constant must be modified. Finally, the above
two mechanisms coexist in the mixed/noncompetitive
inhibition mechanism. The corresponding parameters
can be obtained by combining the changes adopted in
the previous two cases. A summary of the specific effects
of inhibition on the parameters of the Michaelis-
Menton equation is given in Table 2. In this table,

where CI denotes the inhibitor concentration, and KI and
KI

/ are dissociation constants.

5. Membrane Transport
Molecules can be transported across the cell mem-

brane. Three main categories of molecule transport exist
in cells, i.e., free transport, facilitated transport, and
active transport.2 The smaller molecules, e.g., ethanol,

Figure 3. Petri-net models for membrane transport mecha-
nisms: (a) free transport; (b) facilitated or active transport.

Figure 4. General functions of an operon.

r1 )
v1CS

K1 + CS
(1)

r2 )
v2CS1CS2

(CS1 + K21)(CS2 + K22)
(2)

r3 )
v3CCCS

K3 + CS
(3)

Table 2. Effects of Inhibition on Parameters of the
Michaelis-Menten Equation

inhibition mechanisms v K

no inhibition v K
competitive v RK
uncompetitive v/R′ K/R′
mixed/noncompetitive v/R′ RK/R′

R ) 1 +
C1

KI
(4a)

R′ ) 1 +
C1

KI
/

(4b)
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could easily travel across the cell membrane via simple
diffusion mechanisms.35 The driving force in this case
is the concentration gradient. Fick’s law can be used to
determine the transport rate:

where rm denotes the rate of molecule transport across
the membrane, Dm is diffusivity, CCO and CCI represent
the concentrations outside and inside the cell, respec-
tively, and dm is membrane thickness. On the other
hand, many larger compounds (such as proteins, poly-
nucleotides, and polysaccharides) are transported at
extremely slow rates by free diffusion because of their
very low solubility in the plasma membrane. Carrier
molecules can significantly improve the transport rates.
This carrier-aided process is referred to as facilitated
transport. The active transport mechanism resembles

that of facilitated transport. The main difference is that
the former can facilitate transportation against the
concentration gradient.

The corresponding Petri-net models can be found in
Figure 3. The free transport behavior is described in
Figure 3a. In this model, the places P1 and P2 represent
the concentrations of molecules inside and outside the
cell membrane, respectively. The token number of P1
is always higher than that of P2. The arcs connecting
transition T with P1 and P2 carry rm∆t as the arc
weights. On the other hand, it may be noted from the
Figure 3b that an additional place P3 is included to
model a facilitated or active transport process. This
place (P3) is used to represent the concentration of
carrier. The transport rate in this case may be repre-
sented as

Figure 5. Specific functions of a lac operon: (a) in the presence of allolactose; (b) without allolactose.

rm )
Dm(CCO - CCI)

dm
(5)

rf )
DfCP1CP3

CP1 + CP3
(6)
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where Df is the diffusivity of carrier complex, and CP1
and CP3 represent the concentrations of biomolecule and
carrier molecule, respectively. Again the arc weights in
this model can be specified according to the transport
rate. Notice that, if the Petri net in Figure 3b is used to
describe an active transport process, the token number
of P2 is allowed to be higher than that of P1.

6. Operon

The operons are the functional units for enzyme
production. As mentioned previously, the cellular func-
tions of each operon are performed with segments of
DNA and also protein molecules. The former consist of
regulator, promoter, operator, and structural genes. The
structural genes encode the required proteins, while the

regulatory gene encodes the protein for regulating the
expression mechanisms of structural genes. These genes
are physically arranged in a sequential array as shown
in Figure 4. Various different types of operons have been
identified according to their triggering mechanisms, e.g.,
inducible, repressible, and constitutive. In an inducible
operon, the enzyme is produced only when the inducer/
effector molecule are present. More specifically, the
inducer molecule binds to the repressor protein and
reduces the affinity of the repressor binding to the
operator. The lac operon is the most celebrated example
in this case. The inducer molecule (allolactose) interacts
with repressor to form an inactive repressor complex,
which has very low affinity toward operator binding. In
the absence of inducer molecule, the repressor molecule

Figure 7. Specific functions of a tryptophan operon: (a) in the presence of tryptophan; (b) without tryptophan.
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tends to bind to the operator and shut down the
transcription process. On the other hand, the function
of co-repressor/effector molecule is just the opposite of
that of the inducer in the case of repressible operon. The
repressor here does not have binding ability toward the
operator. The presence of the co-repressor molecule
could promote binding. The trptophan (trp) operon is a
well-known example of a repressible operon. It always
responds to the cell’s need to produce tryptophan.
However, tryptophan also acts as an effector molecule
to enhance repressor binding. As a result, the presence
of a significant amount of trytophan tends to shut down
the biosynthesis process. Finally, it has been well
established that the constitutive enzymes are produced
as long as the required raw materials, i.e., the amino
acids, are available in the cell environment. Notice that
all glycolytic enzymes are constitutive in nature.36

A set of generalized Petri nets have been developed
to describe all three types of operons mentioned above.
Following are the detailed descriptions of these models:

Petri Net Representing Inducible Operons. For
illustration convenience, let us consider the specific
example of the lac operon (see Figure 5). Notice that
there are three structural genes in this case, i.e., lacZ,
lacY, and lacA. After the regulon triggers the regulatory
switch in the lac operon, the repressor mRNA and
subsequently the repressor are produced. If the inducer
is available, then its interaction with the repressor
protein should create the inactive repressor complex
(Figure 5a) and thus the operator can be freed to
activate the structural genes. Consequently, the lac
operon produces a mRNA with three ribosome binding
sites, each of them is transcribed with the activated
genes and the end products of the lac operon, i.e.,
â-galactosidase (lacZ), permease (lacY), and acetyl
transferase (lacA), can be translated with the corre-
sponding mRNA polymerases. It has been reported that
â-galactosidase is involved in converting lactose into
glucose, galactose, and allolactose (inducer), while the
permease is responsible for transporting lactose from
the external environment into the cell.33 The function
of acetyl transferase is still unknown. Finally, it should
be noted that the repressor always develops a strong
affinity toward the operator without the inducer mol-
ecule. If a binding is formed between them, the protein
production process will be shut down completely (Figure
5b).

The Petri-net model for the lac operon is shown in
Figure 6. This model consists of four layers, namely, (1)

the regulatory switch, (2) the repressor production and
deactivation mechanisms, (3) the operator switch, and
(4) the enzyme production mechanisms. The regulatory
and operator switches are represented with discrete
places while the other two layers are represented with
continuous places. All transitions in Figure 6 are
discrete. The regulatory switch in the first layer consists
of two discrete places (P1 and P2) connected with two
discrete transitions (T1 and T2). A token can be intro-
duced in either P1 or P2 to represent the state of the
regulatory switch, i.e., off or on. The input places P31
and P32 represent the regulon signals to turn on and
off the switch, respectively. The delay times of transi-
tions T1 and T2 are used to reflect the response times
of the switch. Notice that the Petri net structure of
operator switch is essentially the same as that of the
regulatory switch.

The concentrations of regulatory gene (P3), messenger
RNA (P4), repressor protein (P5), inducer protein (P6),
and inactive repressor (P7) are all described in the
second layer of the operon model. Notice that the
transcription action (T3) is triggered if gene lac I is
present and also the regulatory switch is turned on. The
mRNA, repressor, and inactive repressor are produced
via transcription (T3), translation (T4), and the reaction
with inducer allolactose, respectively. On the other
hand, they are consumed in the latter two processes
mentioned above and also in their respective self-
degradation mechanisms. Notice that the presence of
inactive repressor prevents the operator switch from
being turned off. Furthermore, if its concentration
exceeds a certain threshold level and the switch position
is “off” (P9) originally, the transition T6 can be fired to
move to position “on” (P8). On the other hand, this
position can be switched from “on” to “off” if the
repressor concentration is above a limiting value and
that of inactive repressor is negligibly low at the same
time.

The concentrations of structure genes (P10, P11, and
P12), messenger RNAs (P13, P14, and P15), and protein
products (P16, P17, and P18) are modeled in the fourth
layer. More specifically, the places P10-P12 are associ-
ated with the structural genes lacZ, lacY, and lacA,
respectively, and P16-P18 represent the concentrations
of the protein products â-galactosidase, permease, and
acetyl transferase, respectively. The self-degradation
processes of repressors, mRNAs, and enzymes are
characterized with terminal transitions T14-T22. The
Petri-net structures used to model the production and
consumption processes of the mRNAs are in essence the
same as those for the repressor mRNA. Finally, notice
that the delay times of transitions T23-T25 represent
the times required to produce the messenger RNAs, and
those assigned to T11-T13 are used to reflect the times
required to produce â-galactosidase, permease, and
acetyl transferase, respectively.

The rates of decomposition and self-degradation can
be specified with the weights on the corresponding
place-to-transition arcs. Lee and Bailey37,38 suggested
that these reaction rates could be determined according
to

where Kd represents the reaction constant and CX
denotes the concentration of protein molecules, i.e., the
token number of the input place. On the other hand,
the generation rate of a particular protein in this operon

Figure 9. Petri-net model of a regulon.

rd ) KdCX (7)
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is specified with the weight on the corresponding
transition-to-place arc. In general, this rate should be
the same as the weight on the place-to-transition arc
connecting to its input transition. For example, in
Figure 6, the weight associated with the arc connecting
transition T3 and place P4 can be regarded as the
generation rate of repressor mRNA and CX in this case
should be the concentration of regulatory gene.

Petri Net Representing Repressible Operons.
The trp operon is considered here as an example for
illustrating the Petri-net structure for repressible op-

erons (see Figure 7). This operon has five structural
genes: trpA, trpB, trpC, trpD, and trpE. The genes trpE
and trpD are needed in the production of an enzyme
anthranilate synthetase. On the other hand, the gene
trpC is responsible for encoding indole-3-glycerol phos-
phate synthase and phosphoribosylanthranilate isomer-
ase, along with trpA and trpB, is the precursor for
synthesizing the end product tryptophan. It may also
be noted that, in the trp operon, tryptophan itself acts
as an effector called the co-repressor. An increase in its
concentration triggers the reaction with repressor pro-

Figure 10. Petri-net models of modulons: (a) for describing the impacts of lower-than-normal process parameters; (b) for describing the
impacts of abnormal process parameters in general.
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tein to form the repressor dimer. The dimer enhances
the binding of repressor toward the operator and halts
the protein synthesis process. The Petri-net model for
this repressible operon is given in Figure 8. Notice that
it is very similar to the Petri net for describing the
inducible operon (Figure 6). The major differences
between the two are concerned with the operator switch
and functional activities of repressor production and
deactivation mechanisms (the second layer) and enzyme
production mechanisms (the fourth layers). For the sake
of brevity, the detailed explanation of net structure is
not repeated here.

Petri Net Representing Constitutive Operons.
As mentioned earlier, a constitutive operon produces
enzyme(s) as long as the required raw materials are
available. The PN model for such an operon can thus
be constructed simply according to the first and fourth
layers of the Petri net representing an inducible operon.

7. Regulon and Modulon

The functional molecules in a regulon play the roles
of sensors, local controllers, and signal transducers in
the cell metabolism. The regulon reacts to signals from
a modulon or from the sensor molecules. A general
model of regulon is given in Figure 9. Notice that the
regulon is essentially a multi-input and multi-output
component. The inputs are basically sensor (C1, C2, ...)
or modulon signals (P1in, P2in, ...). The outputs can be
used as the activation/deactivation signals to operons
or as inputs to other regulons. Thus, a group of regulon
models can be arranged in parallel or in series as
required.

Finally, a modulon reacts to changes in the conditions
of cell environment, e.g., oxygen concentration, nutrition
content, temperature, etc., with control signals to vari-
ous regulons. A generalized Petri-net model can be
developed to characterize the modulon behaviors. Let
us first consider the Petri net given in Figure 10a. This
model consists of a continuous place (P1) and two
discrete places (P2 and P3) connected with two discrete
transitions (T1 and T2). Here, P1 is used to reflect a
particular environment condition, e.g., the oxygen con-
centration. The modulon function is activated or de-
activated on the basis of the token number in P1. On
the other hand, P2 and P3 represent, respectively, two
different qualitative concentration ranges, i.e., “normal”
and “low”. The place P1 is connected to transition T1
with a test arc and to another transition T2 with an
inhibitor arc. The arc weights C1 and C2 (C1 g C2)
denote, respectively, the upper and lower threshold
limits between the two qualitative ranges. The transi-
tion T1 is connected to P2 and also P41-P4M with
normal arcs. The latter places are used to represent the
activation/deactivation signals of a set of different
regulons. Similarly, the transition T2 is connected to
P3 and also to the places P51-P5N denoting the signals
for another set of regulons. Finally, to ensure that the
states associated with places P2 and P3 are mutually
exclusive, the former is connected to T2 and the latter
T1.

Notice that the Petri net in Figure 10a can only be
used to describe the impacts of lower-than-normal
process parameters. Its mirror image can be easily
constructed to model the adverse effects caused by the
opposite, i.e., higher-than-normal, environment condi-
tions. These two nets can then be combined to form a
more complete version of the modulon model (see Figure

10b). In this model, the place P6 is used to reflect the
higher-than-normal concentration range and the arc
weights C3 and C4 (C3 g C4) denote the threshold
limits between the concentration ranges “high” and
“normal” respectively.

8. Petri-Net Objects

The unit models developed in the earlier sections can
be packaged as objects to enhance the readability of the
Petri nets. For illustration purpose, let us first consider
the modulon model in Figure 10a as an example. Since
it is only necessary to consider the inputs and outputs
of each unit model in building the system model, the
corresponding connecting ports should be provided on
the object frame of modulon (see Figure 11). It may be
noted that the places representing the intrinsic unit
states, i.e., P2 and P3, are not shown on the frame. Let
us next consider the Petri-net model of the inducible
operon in Figure 6. Although this Petri net has four
layers with many places and transitions, the connecting
ports with other functional units are places representing
(i) regulon signals (P21 and P22), (ii) the concentration
of â-galactosidae (P16), and (iii) the concentration of
permease (P17). Accordingly the operon model can be
packaged and its object frame is given in Figure 12a.
Finally, the Petri-net model of repressible operons can

Figure 11. Object frame of the modulon model.

Figure 12. Object frames of the Petri-net models of (a) inducible
operon and (b) repressible operon.
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be packaged in a similar fashion. The resulting object
frame is shown in Figure 12b.

9. Model Construction Procedure

The integrated system model can be constructed by
connecting the Petri-net objects. A systematic model-
building procedure has been developed in this study
(Table 3). Let us consider the reaction/transport network
presented in Figure 13 as an example. This artificial
system was configured to imitate the typical metabolic
pathways of glucose, including basically the transporta-
tion process across cell membrane and the following
anabolism reactions. For illustration convenience, the
reaction kinetics and gene regulation mechanisms are
chosen to make the following discussions easy to com-
prehend. The reactions r1-r12 represent the primary
reaction network where reactant A is converted to
product F. The intermediates (B to E and G to J) are
formed and consumed in these reactions. It is assumed
that only A1 and F can be transported across the cell
membrane. The former is enabled in a facilitated
transport process Tr1 and the latter a free transport
process Tr2. The metabolites K, X, and Y are produced
and/or consumed in the auxiliary reactions r13-r16.
Notice that X and Y are also involved in the primary
reactions r1, r3, r4, and r5. The symbols c1-c16 are
used to represent the enzymes for the corresponding

reactions. It is assumed that c12 is inducible and c6 and
c15 are repressible, while all other enzymes are consti-
tutive. In addition, we assumed that

•Enzyme c15 is produced only when the reactant A is
lower than a certain threshold value.

•The resulting increase in the concentration of K
activates the inducible operon for c12.

•The inducible operon produces two enzymes, i.e., cr1
and c12. The enzyme cr1 supports the transport of A1

while c12 is the catalyst of reaction r12.
•The production of c6 is suppressed when the concen-

tration of intermediate C builds up.
Let us now try to follow the construction steps listed

in Table 3 to build a system model:
Step 1. The primary and auxiliary reaction/transport

networks are presented in Figure 13.
Step 2. The signal flow diagram of the above reaction

system can be found in Figure 14. It may be noted that,
in the regulatory and signal transduction networks,
there are one modulon, four regulons, and 16 operons.
The labels Ope_r1 and Ope_r2 denote two different
repressible operons; Ope_in represents an inducible one;
Ope_c1 to Ope_c13 are 13 different constitutive operons.
Variations in the environment conditions are sensed by
the modulon. The lower and upper threshold values of
temperature in the cell environment have been assumed
to be 35 and 50 °C, respectively, while the threshold
values of pH are 5 and 9. Signals reflecting pH and
temperature are directed to the regulon Reg_1 only, and
on the other hand, information about nutrient is trans-
mitted to every regulon. Reg_1 switches on all constitu-
tive operons as soon as nutrient availability is confirmed
by the modulon. Reg_4 activates Ope_r1 after receiving
the nutrient availability information from modulon and
deactivates the same operon when the concentration of
C is above 1 mM. Reg_2 activates (or deactivates) the
repressible operon Ope_r2 when the concentration of A

Table 3. Construction Procedure of System Model

step 1 depict the primary and auxiliary
reaction/transport networks

step 2 construct the signal flow configuration in the gene
regulatory network involving modulon,
regulon, and operon

step 3 select the appropriate unit models
step 4 assemble the unit models according to the

reaction/transport networks and signal flow
configuration obtained in steps 1 and 2

Figure 13. Typical reaction/transport network.
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decreases to a level less than 15 mM (or increases to a
level above 16 mM). The subsequent production of K
could cause Reg_3 to trigger the inducible operon Ope_in
as long as its concentration is above zero.

Step 3. Appropriate unit models have been selected
for the system given in Figure 14. The modulon models
developed previously have been adopted in this example
to describe the effects of nutrients (Figure 10a) and the
effects of temperature and PH (Figure 10b). The unit
models given in Figures 6 and 8 have been chosen to
represent the inducible and repressible operons, respec-
tively. As suggested previously, the first and fourth
layers of the unit model of an inducible operon can be
used to represent the constitutive operons. This ap-
proach has been followed to describe Ope_c1-Ope_c13.
Table 4 gives the rate equations used in the operon
models. Both primary and auxiliary reactions are
described on the basis of the model structure given in
Figure 1. The transportation processes of A1 and F are
represented with the unit models presented in Figure
3. The rate equations for the reaction and transport
processes are listed in Table 5.

Step 4. The system model can be constructed by
connecting the Petri-net objects of unit models according
to the reaction/transport networks in step 1 and signal
flow configuration in step 2.

Simulation studies can be performed according to the
above hierarchical Petri net to generate useful informa-

tion. Before executing the model, additional initial
conditions should be specified:

•The initial concentration of reactant A is 20 mM and
those of X and Yare both 5 mM. The concentrations of
all other metabolites are zero initially.

•Initially, the state of modulon is “normal”. The initial
temperature and pH of the cell environment are main-
tained at 35 °C and 7, respectively. Nutrient concentra-
tion is assumed to be maintained at 1 mM throughout
the entire simulation period.

•All places in the regulons are empty initially.
•All places in the operons are empty except those

representing regulatory gene, inducer/activator protein,
and structural genes. Their concentrations are main-
tained at 1 mM throughout the simulation period.

The simulation runs in this work were implemented
with a commercial software, Visual Object Net++.32 The

Figure 14. Signal flow diagram for the reaction/transport scheme given in Figure 13.

Table 4. Rate Equation Used in Protein Synthesis

rate equation K remarks

r ) KCS 1 production of mRNA
0.25 self-degradation of mRNA
0.85 production of repressor/activator
0.25 self-degradation of repressor/activator
0.85 production of enzyme
0.75 self-degradation of enzyme
0.1 self-degradation of inactive

repressor/active effector

r )
KCS1CS2

(1 + CS1)(1 + CS2)

1 production of inactive repressor/
active effector
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simulation results are given in Figure 15. It may be
noted that the concentration of reactant A reduces to
15 mM from its initial value of 20 mM within a few
seconds and fluctuates around the same value for rest
of the process time. This is due to the fact that the
repressible operon for c15 (Ope_r2) is switched on when
the concentration of A reduces to a level less than 15
mM. Consequently, the triggered reaction r15 causes
an increase in the concentration of K. This increase
activates the inducible operon (Ope_in) later and thus
the catalysts cr1 and c12 can be produced. As mentioned
before, the catalyst cr1 is responsible for the transporta-
tion of A1 and c12 is for the conversion of A1 to A. As a
result, reactant A is consumed and then produced again
periodically as shown in Figure 15a. The moderate
fluctuation of CA around 15 mM is due to the conditions
assigned for the inducible operon Ope_in and repressible
operon Ope_r2. The concentration of intermediate B
increases to 0.5 mM and stays around the same value
for the rest of the reaction time. The marginal fluctua-

tion of CB is due to the fluctuation of CA. This effect can
also be observed in the concentration of other interme-
diate metabolites, i.e., CC-CE and CG-CJ. Notice that
CF increases monotonically with reaction time as the
transport rate of F is relatively low. The concentration
of auxiliary metabolite X reduces initially from 5 mM
within a few seconds and then fluctuates around 2 mM
for the rest of the reaction period. The initial reduction
in CX is because X is involved in reaction r1 through

Table 5. Rate Equations of Reaction Transitions in
System Model

reaction reactant product catalyst rate expression

r1 A,X B, Y C1 CC1CACX

(CA + 1)(CX + 1)

r2 B C C2 CC2CB

(CB + 1)

r3 C,Y D C3 CC3CCCY

(CC + 1)(CY + 1)

r4 D,X E C4 CC4CDCX

(CD + 1)(CX + 1)

r5 E,Y F C5 CC5CBCY

(CB + 1)(CY + 1)

r6 B G C6 CC6CB

(CB + 1)

r7 G,X I C7 CC7CGCX

(CG + 1)(CX + 1)

r8 G,Y H C8 CC8CGCY

(CG + 1)(CY + 1)

r9 I,H J,C C9 CC9CHCY

(CH + 1)(CI + 1)

r10 C,J D C10 CC10CCCJ

(CC + 1)(CJ + 1)

r11 H,Y E C11 CC11CHCY

(CH + 1)(CY + 1)

r12 A1 A C12 CC12CA

CA + 1

r13 Y X C13 CC13CY

CY + 1

r14 X Y C14 CC14CX

CX + 1

r15 X K C15 CC15CX

CX + 1

r16 K X C16 CC16CX

CX + 1

Tr1 A1
o A1 Cr1 CR1CA′o

CA′o
+ 1

Tr2 F Fo CF

Figure 15. Simulation results obtained with the system model
of the metabolic network given in Figure 14 under normal
operation.
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which the metabolite flux is higher than other compet-
ing reactions. This effect is also reflected in CY. Finally
notice that the metabolite K forms and decomposes
intermittently. This phenomenon may be explained by
the fact that catalyst c15 (which facilitates reaction r15)
is produced whenever the concentration of reactant A

reduces to a level below 15 mM and the production of
c15 is halted when CA reaches 16 mM.

10. Predicting the Effects of Gene Modification
As mentioned before, it is desirable to produce cred-

ible predictions of the effects of gene modification in

Figure 16. Simulation results obtained with the system model
of the metabolic network given in Figure 14. Case 1: Reaction
rate of r1 is increased via gene modification.

Figure 17. Simulation results obtained with the system model
of the metabolic network given in Figure 15. Case 2: Reaction
rate of r2 is slowed due to feedback inhibition.
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many metabolic engineering studies. To demonstrate
the descriptive power of the proposed model in such
applications, two additional case studies have been
carried out on the basis of the example system described
above:

Case 1: Reaction Rate of r1 Is Increased via
Gene Modification. Let us assume that the reaction
rate of r1 in the original system can be improved

through gene modification. Its direct effect can be
modeled by adjusting the rate constant for enzyme
production in Ope_c1. In particular, the original value
of 0.85 used in the fifth row of Table 4 has been changed
to 1.25. The increased enzyme concentration could
enhance the rate of r1 since the rate equation in this
case is taken from the first row of Table 5. The
simulation results are given in Figure 16. Notice that
the concentration of reactant A now decreases mono-
tonically without fluctuation. The rate of concentration
decrease is large shortly after reactions begin and then
gradually reduces to a lower level. The sharp decrease
of CA in the initial stage may be attributed to the facts
that the inducible operon Ope_in and repressible operon
Ope_r2 are off initially and are both activated later
when CA reduces to below 15 mM. In other words, the
sharp decrease of CA should occur before the production
of inducible catalyst c12. On the other hand, the more
gradual decrease of CA later reveals that the rate of
decomposition (reaction r1) is higher than the rate of
production (reaction r12) as the rate of r1 is improved
via gene modification.

The concentrations of intermediate metabolites B-F
increase with reaction time. This is again due to the
significant increase in the rate of r1. Another interesting
observation is the behavior of CG. Notice that after
attaining a certain concentration, the metabolite G
depleted completely. This is because the production of

Figure 18. Simulation results of the system model in Figure 15.
Case 2: Flux is re-routed through an alternative pathway in a
system with feedback inhibition on r2.

Figure 19. Simulation results of Petri-net model compared with
experimental data from Knorre41 (O) and Pestka et al.42 (b).

Figure 20. Simulation results of Petri-net model compared with
experimental data from Goodwin43 (b).
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enzyme c6 is suppressed when the concentration of C
is above 1 mM (see Figure 16c). It should be noted that
CC in the previous case study is kept below 1 mM
throughout the entire reaction period (see Figure 15c).
Notice also that the behavior of CH is similar to that of
CG. This can be explained by the fact that the metabolite
H is produced as long as CG is above zero and consumed
completely after CG becomes zero.

On the other hand, it can be observed that CI reaches
0.65 mM and remains constant for the rest of the
reaction time. This is because the reaction r9 is stopped
after CH reaches zero. This trend can also be observed
in CJ. Finally, we can see that metabolite K is produced
continuously. This can be explained by the facts that

CA is reduced to a level less than 15 mM within a few
seconds and kept below 15 mM for rest of the process
time.

Case 2: Flux Is Rerouted through an Alterna-
tive Pathway in a System with Feedback Inhibi-
tion on r2. Let us assume that, under certain condi-
tions, the end product F inhibits reaction r2 in the
original system according to the following equation:

The corresponding simulation results can be found in
Figure 17. It can be seen that the behavior of CA is

Figure 21. Simulation results obtained with Petri-net model at an initial lactose concentration of 0.08 mM: (a) internal lactose, (b)
allalactose, (c) mRNAz, (d) â-galactosidase, and (e) permease.

r2 )
C2CB

CF + CB
(8)
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similar to that observed in the original case (see Figure
15a). After the concentration of B increases to 3.5 mM,
CB then reduces and fluctuates around 1 mM. The
increase of CB in the initial stage may be due to the fact
that CC is quickly increased to above 1 mM and r6 is
suppressed before the feedback inhibition on r2 becomes
effective. The decrease of CB later can be attributed to
the fact that r6 is activated again when the feedback
mechanism takes effect. Consequently, CC is reduced
to 0.25 mM after reaching a maximum at around 30 s
and remains the same for the rest of reaction period.
The same trends can also be observed in CD and CE.
Notice that, although the flux via r2 is suppressed,
enough flux can still be generated via r9, r10, and r11
to maintain a finite level of CC, CD, and CE. Notice that
the behavior of CF is similar to that of the corresponding
results obtained in the original system (see Figure 15f).

The concentration of G (or H) reaches 0.5 mM (or 0.25
mM) and then fluctuates for the rest of the period. On
the other hand, CI is increases gradually with process
time. This may be due to fact that the flux through r7
is higher than that through r9. The same trend can also
be found in CJ. This phenomenon can be attributed to
the flux difference between r9 and r10. Notice the
behavior of CK is the same as those found in the original
case also (see Figure 15k). For the sake of brevity, an
analysis of its causes is not repeated here. Finally, notice
that the auxiliary metabolites CX and CY are again
similar to those observed in the original case.

As stated earlier, the gene control mechanism can be
altered to improve the reaction performance. In certain
applications, the desired product could be an intermedi-
ate in the reaction network. Let us assume that inter-
mediate I is the desired product in this case. Based on

Figure 22. Simulation results obtained with Petri-net model at an initial lactose concentration of 0.008 mM: (a) internal lactose, (b)
allalactose, (c) mRNAz, (d) â-galactosidase, and (e) permease.
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the simulation results presented in Figure 17, it can be
concluded that reaction r8 should be halted in order to
enhance the production rate of I. Accordingly, an ad-
ditional regulon control mechanism (Reg_5) has been
adopted to turn off the constitutive operon Ope_c7 when
CB is above zero. The corresponding simulation results
can be found in Figure 18. Notice that the trends of CA-
CE are similar to those observed in Figure 17. The
metabolites C, D, and E are formed initially and
consumed completely later. This is due to the fact that
r2 is suppressed by feedback inhibition mechanism and
r8 is deactivated through the modified gene regulation
mechanism. The metabolites H and J cannot be pro-
duced since r8 is deactivated. By comparing Figures 17i
and 18i, it can be seen that a 5-fold increase in the

production rate of metabolite I can be anticipated with
the proposed change in the regulatory mechanism.

11. Application to a Specific Metabolic Network

To validate the proposed approach, the simulation
results obtained with the Petri-net models of the lac
operon have been compared with experimental data
reported in the literature. Yildirim and Mackey39 de-
veloped a mathematical model for describing the induc-
tive regulation behaviors in the lac operon. This dy-
namical model takes into account of the roles of the
permease (which facilitates the internalization of ex-
ternal lactose), internal lactose, â-galactosidase (which

Figure 23. Simulation results obtained with Petri-net model at an initial lactose concentration of 10mM: (a) internal lactose, (b) allalactose,
(c) mRNAz, (d) â-galactosidase, and (e) permease.
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is involved in the conversion of lactose to allolactose,
glucose and galactose), allolactose (which interacts with
the lac repressor) and mRNA (which is synthesized from
structural gene via transcription). The model formula-
tion consists of five nonlinear differential equations
incorporating the time delays due to DNA transcription
and mRNA translation. The Petri-net model of the lac
operon was first assembled with these equations on the
basis of Figure 6. We have tested this model with two
sets of â-galactosidase activity-versus-time data. The
first data set is adopted from the experimental work
presented in Knorre.40 In this study, the concentration
of â-galactosidase was periodically measured after a
sudden switch from the original glucose-rich and lactose-
free medium to a glucose-free and lactose-rich medium
for E. coli ML30. The second data set is taken from
Pestka et al.41 They studied the inhibition phenomena
in mRNA translation process for producing â-galactosi-
dase and published its activity-versus-time data for E.
coli 294 in the presence of isopropylthiogalactoside
(IPTG). These two data sets and the model simulation
results are shown in Figure 19. For comparison purpose,
the experimental and simulation data are scaled so that
the steady-state â-galactosidase activities in the above
three cases all reach the same value. It can be observed
in Figure 19 that there is a good agreement between
the trend in model predictions and that in the experi-
mental data. As a third test, the simulation results were
compared with the experimental data obtained from
Goodwin.42 In this paper, the dynamic behavior of
â-galactosidase was studied in chemostat culture by
feeding phosphate at constant time intervals. The length
of this time interval equals the bacterial doubling time.
Experimentally, it was observed that â-galactosidase
concentration oscillated with the same period, i.e., the
feeding time interval. Figure 20 shows the experimental
data of â-galactosidase as well as the simulation results.
Again, the model predictions in this case are quite
reasonable.

With the above Petri-net model, we can further
investigate how the concentration of external lactose (Le)
affects the induction of the lactose operon. In the first
simulation run, the initial conditions were set to be the
same as those used in Figure 19 (Le ) 0.08 mM). In
Figure 21a-e, the concentration profiles of intracellular
lactose, allolactose, mRNA, â-galactosidase, and per-
mease are plotted, respectively. It can be observed that
a net amount of intracellular lactose was consumed until
a threshold amount of permease was synthesized (Fig-
ure 21a). After reaching a maximum concentration later
on, there was a steady loss of lactose due to the reactions
producing allolactose, glucose, and galactose via â-ga-
lactosidase. The allolactose concentration decreased
briefly and subsequently increased with time (Figure
21b). At 60 min, it reached the highest point at which
the lactose operon experienced the maximum induction.
The mRNA concentration was lowered initially due to
a larger degradation rate and then raised to a steady-
state value as a result of the increase in allolactose
concentration (Figure 21c). Since the synthesis rate of
â-galactosidase is dependent upon the concentration of
mRNA, its concentration gradually increased from zero
with time. The profile of the permease concentration
(Figure 21e) is similar to that of mRNA in Figure 21c.
This is due to the facts that permease was produced
directly from mRNA via translation. In the next simula-
tion run, the extracellular lactose concentration was

decreased to 0.008 mM. It was found that the induction
effects of the lactose operon were reduced drastically
(see Figure 22a-e). Consequently, the concentrations
of allolactose (Figure 22b) and â-galactosidase (Figure
22d) were both very low throughout the entire reaction
period, and the concentrations of the other three also
quickly dropped to zero (Figure 22a, c, and e). In the
last case study, the concentration of external lactose
concentration was raised to 10 mM. The simulation
results are shown in Figure 23a-e. Notice that the
steady-state â-galactosidase concentration in Figure 23d
is higher than those obtained in the previous cases (see
Figures 21d and 22d). This observation reflects a much
more prominent induction effect.

Also, in the PaJaMo (i.e., Pardee, Jacob, and Monod)
experiment, synthesis of â-galactosidase was studied
during conjugation of male bacteria with female.43 After
a threshold amount of â-galactosidase was produced,
enzyme synthesis stopped abruptly. If at this time
additional inducer(s) can be introduced, the enzyme
synthesis process could resume.44 This phenomenon can
be qualitatively reproduced with the proposed Petri-net
model. Our simulation results are shown in Figure 24.
At the time indicated, as a result of the added inducer
(i.e., the external lactose), the production of enzyme
continued (dash line). On the other hand, the enzyme
level remains relatively stable without the inducer (solid
line).

Finally, notice that the two important regulatory
mechanisms of the lac operon that depend on the
extracellular glucose concentration, i.e., catabolite re-
pression and inducer exclusion, are missing in the Petri-
net model used in the above case studies. It is well
established that the presence of external glucose can
affect the induction of expression process. In particular,
the synthesis of carbohydrates is inhibited when the
external glucose is plentiful. This phenomenon is known
as “catabolite repression”. The primary signal molecule
for catabolite repression is cAMP (cyclilc AMP). In
addition, the transport of lactose by permease is inhib-
ited by external glucose, a phenomenon known as
“inducer exclusion”. Santillán and Mackey45 developed
a more comprehensive model of the lactose operon that
includes all known regulatory mechanisms. The corre-
sponding Petri-net model has also been constructed with
the proposed approach. The model validity was again
verified by simulating the experiments of Knorre.40 The
effects of varying the concentrations of external lactose

Figure 24. Qualitative simulation of the PaJaMo experiment.
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and glucose on the expression process of lac operon can
be analyzed with this more comprehensive model. In the
first set of simulation runs, it can be observed that the
entracellular lactose concentration does not really influ-
ence the cAMP concentration (Figure 25a). On the other
hand, a higher external lactose concentration usually
results in a higher lactose uptake rate and consequently
causes an increase in the intracellular lactose concen-
tration. This higher internal lactose concentration in
turn drives the allolactose concentration higher (Figure
25b), and therefore the induction effect on the lactose
operon becomes more pronounced. A stronger induction

intensity definitely produces more mRNAB (Figure 25c),
mRNAP (Figure 25d), â-galactosidase (Figure 25e), and
permease concentration (Figure 25f). In the second set
of simulation studies, it can be clearly seen that the
presence of extracelllar glucose could inhibit the produc-
tion of cAMP (Figure 26a). Lowering the cAMP concen-
tration results in a decrease in the intracellular allolac-
tose concentration (Figure 26b) and also weakens the
induction effect. Consequently, the depletion rates of
mRNAB (Figure 26c), mRNAP (Figure 26d), â-galactosi-
dase (Figure 26e) and permease concentration (Figure
26f) become more apparent.

Figure 25. Simulation results obtained with Petri-net model at external lactose concentrations of 0.003 (- - -), 0.002 (s), 0.001 (‚ ‚ ‚), and
0.0005 mM (- ‚ - ‚) respectively: (a) cAMP, (b) allalactose, (c) mRNAB, (d) mRNAp, (e) â-galactosidase, and (f) permease.
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12. Conclusions

Based upon the concept of functional unit, a hierar-
chical approach is proposed in this study to model
metabolic phenotype. Standard Petri-net models are
developed to characterize the individual reactions, gene
regulation mechanisms and other signal transduction
processes. A systematic procedure for constructing the
system models from these components is presented and
also illustrated with a realistic example. The proposed
approach has also been validated with experimental
data. It can be observed that the metabolic systems can
indeed be properly modeled with Petri nets and the
required modeling load can be effectively relieved by the
use of the general purpose Petri-net objects.

Nomenclature

C ) concentration
CC ) enzyme concentration
CCI ) concentrations inside the cell
CCO ) concentrations outside the cell
CI ) inhibitor concentration
CP1 ) concentration of biomolecules
CP3 ) concentration of carrier molecules
CS ) concentration of the substrate
CX ) concentration of protein molecules
Df ) diffusivity of carrier complex
dm ) membrane thickness
Dm ) diffusivity
Kd ) reaction constant

Figure 26. Simulation results obtained with Petri-net model at the external glucose concentrations of 0 (s), 10 (‚ ‚ ‚), and 100 mM (- - -)
respectively: (a) cAMP, (b) allalactose, (c) mRNAB, (d) mRNAp, (e) â-galactosidase, and (f) permease.
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Ki ) Michaelis constant
KI, KI

/ ) dissociation constants
r ) reaction rate
rd ) rates of decomposition and self-degradation
rf ) rate of facilitated transport
rm ) rate of molecule transport across the membrane
v1, v2, v3 ) maximum reaction rate
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