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To identify parametric models for stochastic systems, the standard least-squares method tends to yield biased
parameter estimates owing to correlated residuals resulting from unknown stochastic disturbances. Although
the consistency properties of parameter estimates could generically be secured by instrumental variable methods,
the inadequate choices of instruments and prefilters would render them much less efficient. This article
establishes a method to identify an ARARX (AutoRegressive AutoRegressive with eXogenous input), an
ARMAX (AutoRegressive Moving Average with eXogenous input), or a BJ (Box–Jenkins) model based on
the process output data smoothed by the EWMA (Exponentially Weighted Moving Average). The major
advantages of the method are 2-fold. First, the proposed off-line and online algorithms often acquire unbiased,
efficient, and consistent parameter estimation from identification tests operating in open loop or closed loop.
Second, the resultant process plus disturbance model can be easily employed to remove the autocorrelation
in process data for accurate statistical process monitoring. Monte-Carlo simulation studies demonstrate that
the proposed method provides reliable parametric models for a wide variety of noise characteristics and is
highly robust with respect to the sampling period, sample size, and noise-to-signal ratio.

1. Introduction

Chemical and industrial processes are often subject to
stochastic disturbances or noises that influence process outputs
randomly. With the advances in process monitoring and control
techniques, it is required that models for stochastic systems be
acquired in a more accurate and efficient manner.1-5 Discrete
system identification is a useful means for this purpose, despite
the fact that most physical systems are continuous in nature. A
great number of identification methods have been available for
finding discrete-time parametric models in noisy situations.6-10

The reliability of parametric identification methods can be
evaluated by their statistical properties such as bias, efficiency,
and consistency.6,11 The standard least-squares (LS) method, a
special case of the prediction error method, describes the
stochastic system by an ARX (AutoRegressive with eXogenous
input) model structure. It can then be shown that the residual is
uncorrelated (an independent sequence), rendering the least-
squares estimator (LSE) unbiased and consistent. On the other
hand, when the actual noise characteristics violate the ARX
assumption, the residual becomes autocorrelated and the LSE
would be severely biased.

Clarke12 presented the generalized least-squares (GLS)
method to deal with the case of correlated residuals. The method
assumes an ARARX (AutoRegressive AutoRegressive with
eXogenous input) model structure in which the residual is
characterized by an AR noise filter. Hence, if the choice of the
noise filter is adequate, the residual constructed from the filtered
input and output signals becomes uncorrelated. The GLS
algorithm can be accomplished in an off-line iterative or online
recursive manner13,14 and belongs in the class of methods based

on the whitening of the prediction error.10 Other methods include
the extended least-squares method and the maximum likelihood
method.

The IV (Instrumental Variable) methods mitigate the effect
of correlated residuals by creating new instrumental variables
that are highly correlated with the uncontaminated process
variables but uncorrelated with the noise disturbances.7,15

Söderstrom and Stöica16 discussed and compared the consistency
aspects of various IV methods. The IV methods belong in the
class of methods based on the uncorrelation of the observation
vector and the prediction error.10 Other methods consist of the
output error with fixed compensator method and the output error
with filtered observations method.

Ljung8 presented the four-step IV (IV4) method that is
available in the commercial MATLAB software. The IV4
method is a combination of the IV and GLS algorithms. As a
result, it avoids the iteration procedure and possesses better
statistical properties for a wider range of noise characteristics
than the GLS method. Among others, the IV4 method generi-
cally secures the consistency properties of parameter estimates
as the sample size N tends to infinity. However, the parameter
estimates must be efficient or reliable for finite or possibly small
N since the experiment time is often limited in practice. In this
regard, the GLS and IV4 methods are not reliable enough to
deal with system identification under widely different noise
levels and characteristics.

Although identification in open-loop operation is simpler,
there exist situations where the system must be identified in
closed loop. For instance, a feedback controller is already
operating, and it is not possible to open the loop to acquire
data for identification. However, the feedback control would
introduce a correlation between the noise and the process input.
This may impose a bias on many open-loop estimation tech-
niques.10 To overcome this problem, Landau and Zito10

proposed several closed-loop identification methods by incor-

* To whom correspondence should be addressed. Tel: 886-6-
2757575 ext. 62661. Fax: 886-6-2344496. E-mail: shhwang@
mail.ncku.edu.tw.

Ind. Eng. Chem. Res. 2008, 47, 8239–8249 8239

10.1021/ie0707218 CCC: $40.75  2008 American Chemical Society
Published on Web 10/03/2008



porating the controller design, including the closed-loop output
error (CLOE) method, the filtered closed-loop output error
(FCLOE) method, and the adaptive filtered closed-loop output
error (AFCLOE) method.

There are conflicting issues between identification and
monitoring of a stochastic system. For example, a white
measurement noise induces a highly correlated residual to
complicate identification, whereas it simplifies monitoring by
causing uncorrelated sample data. Another issue regards the
choice of the sampling period T. To enhance the ability of
monitoring and/or regulating disturbances, it is advantageous
to sample data as fast as possible. However, building discrete-
time models with very small T compared to the time constants
of the system would make the model fit concentrated to the
high-frequency band and might not allow for much noise
reduction.8 It was reported that a sampling period could be
selected widely from one percent to one-half of the effective
process time for different control or monitoring purposes.17,18

In this work, an EWMA (Exponentially Weighted Moving
Average) method is established to obtain reliable parameter
estimates for an ARARX, an ARMAX (AutoRegressive Moving
Average with eXogenous input), or a BJ (Box-Jenkins) model.
The underlying estimation algorithms are based on the process
output data smoothed by the EWMA. The off-line algorithm is
accomplished by repetitive use of a four-step procedure. The
identified process plus disturbance model could be employed
to remove the autocorrelation in process data for accurate
statistical process monitoring. The online algorithm entails two
recursive routines for updating alternately the process parameters
and the disturbance parameters. Both algorithms work well for
data acquisition in open loop or closed loop. Monte-Carlo
simulation has been carried out to investigate thoroughly the
effects of the sampling period, sample size, and noise-to-signal
ratio on parameter estimates. It is demonstrated that the proposed
method can cope with a wide range of noise characteristics and
is superior to the GLS, IV4, and AFCLOE methods in view of
bias, efficiency, and consistency.

2. The Stochastic System Description

Consider a stochastic system as depicted in Figure 1, where
u(k) and y(k) denote observations of process inputs and outputs
in discrete time, V(k) the stochastic disturbance (or noise), d
the integer number of pure time delay, and G(q) the process
transfer function. The system can be described by the following
difference equation:

y(k)) B(q)
A(q)

u(k- d)+V(k) (1)

A(q)) 1+ a1q
-1 + · · · + anA

q-nA

B(q)) b1q
-1 + b2q

-2 + · · · + bnB
q-nB

where q-1 is the backward shift operator and nA and nB denote,
respectively, the orders of the polynomials A(q) and B(q).

With the orders and delay given, the standard LS method
has been developed to estimate the process model parameters
ai and bi based on input-output observations. However, the

accuracy of the standard LS method stipulates that the noise
V(k) should be described by the following AR structure:

V(k)) 1
A(q)

e(k) (2)

where e(k) is a realization of a white-noise process. Equation 1
is then expressed as an ARX model structure:

A(q)y(k))B(q)u(k- d)+ e(k) (3)

It follows that the residual (or equation error) is uncorrelated.
Introduce the prediction error ε(k,θ) as a linear regression:

ε(k, θ)) y(k)- φ
T(k)θ (4)

where the observation vector (or regressor) φ(k) and the
parameter vector θ are

φ(k)) [-y(k- 1) · · · -y(k- nA) u(k- 1- d) · · · u(k- nB - d) ]T

(5)

θ) [a1 · · · anA
b1 · · · bnB ]T (6)

The least-squares estimator, θ̂LS, can be obtained by minimizing
the quadratic error criterion as

θ̂LS ) arg min
θ

∑
k

ε2(k, θ)) arg min
θ

∑
k

[y(k)- φ
T(k)θ]2 (7)

The above LSE is unbiased and consistent because the sequence
indicated in eq 4 is zero-mean and independent. On the other
hand, a large number of noise characteristics do not fall into
the category of eq 2. As a result, the standard LS method would
generally acquire biased parameter estimates. The GLS and IV4
methods were proposed to deal with such situations by postulat-
ing explicitly or implicitly a more complicated AR noise model
as

V(k)) 1
A(q)C(q)

e(k) (8)

C(q)) 1+ c1q
-1 + · · · + cnC

q-nC

This gives rise to an ARARX model structure:

A(q)y(k))B(q)u(k- d)+ 1
C(q)

e(k) (9)

On the basis of the postulation in eq 8, the GLS and IV4
methods resolve partially the stochastic identification difficulty
that the noise characteristics may vary widely in practice.
Nevertheless, the two methods could be neither unbiased nor
efficient if the actual noise dynamics differ significantly from
eq 8. For example, the noise consists of significant zeros or is
much faster than the process dynamics (such as measurement
noise). Moreover, such deficiencies in the statistical properties
of parameter estimates are deteriorated with an increase in the
sampling rate and/or a decrease in the sample size.

3. EWMA Parameter Estimators

The EWMA is a well-known and popular statistic used for
smoothing and forecasting time series.19-21 To facilitate system
identification in the face of multifarious noise characteristics,
we introduce the EWMA as

�(k)) (1- λ)�(k- 1)+ λy(k) (10)

where 0 < λ e 1 is the weighting constant and the starting
value (the arbitrary k0 represents a starting instant) is

�(k0)) 0

The EWMA �(k) denotes a weighted average of all past and

Figure 1. Noisy discrete-time system.
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current output observations. The value of λ dictates the weight
assigned to the current observation y(k). When λ approaches
zero, a large number of past data points are being effectively
employed for calculations of the EWMA �(k). In the other
extreme of λ approaching one, virtually no averaging is being
performed and �(k) is essentially y(k).

Substituting eq 1 into the y(k) term in eq 10 and ignoring the
effect of noise V(k) could arrive at a linear regression equation:

�(k)) (1- λ)(k-k0)�(k0)-∑
i)1

nA

ai ∑
j)0

k-k0-1

λ(1- λ)jy(k- j- i)+

∑
i)1

nB

bi ∑
j)0

k-k0-1

λ(1- λ)ju(k- j- i- d) (11)

With an appropriate λ, the EWMA-LS estimator for the
parameters ai and bi is given by

θ̂EWMA
LS ) [ ∑

k)k0+1

k0+N

�(k)�T(k)]-1 ∑
k)k0+1

k0+N

�(k)�(k) (12)

where �(k) is computed by eq 10. The regressor

�(k)) [-Y1(k) · · · -YnA
(k) U1(k) · · · UnB

(k) ]T (13)

can be obtained by means of the direct formulas:

Yi(k)) ∑
j)0

k-k0-1

λ(1- λ)jy(k- j- i) (14a)

Ui(k)) ∑
j)0

k-k0-1

λ(1- λ)ju(k- j- i- d) (14b)

or the recursive formulas with Yi(k0) ) Ui(k0) ) 0:

Yi(k)) (1- λ)Yi(k- 1)+ λy(k- i) (15a)

Ui(k)) (1- λ)Ui(k- 1)+ λu(k- i- d) (15b)

The EWMA-LS estimator (eq 12) can be further improved
by using the IV method. Supposing a signal w(k) is introduced
to create the instrumental variables ψ(k), the EWMA-IV
estimator turns out to be

θ̂EWMA
IV ) [ ∑

k)k0+1

k0+N

ψ(k)�T(k)]-1 ∑
k)k0+1

k0+N

ψ(k)�(k) (16)

where

ψ(k)) [-W1(k) · · · -WnA
(k) U1(k) · · · UnB

(k) ]T

(17)

Wi(k)) (1- λ)Wi(k- 1)+ λw(k- i);Wi(k0)) 0 (18)

The effectiveness of the EWMA-IV estimator is attributed to
the construction of ψ(k), which counteracts the influence of
noises on parameter estimation.

4. Selection of Weighting Constant λ

The preceding EWMA estimators demand the selection of
λ. In general, the value of λ should be set close to one if the
noise characteristics resemble the AR structure (eq 8). When
the noise exhibits a significant deviation from that structure, a
smaller value of λ should be employed to alleviate its loathsome
effect on parameter estimates. To find the best λ value, we
develop two error criteria. The first is the output error criterion:

JOE ) ∑
k)k0+1

k0+N

[OE(k)]2 ) ∑
k)k0+1

k0+N

[y(k)- yM(k)]2 (19)

where OE(k) denotes the output error at instant k and yM(k) is
the model predicted outputs by passing the inputs through the
identified model. The second is the filtered output error criterion,
composed of a prefilter F(q) that converts the possibly auto-
correlated signal OE(k) into a white sequence e(k), i.e.,

F(q)OE(k)) e(k) (20)

F(q)) 1+ f1q
-1 + · · · + fnF

q-nF

Equation 20 can be expressed as a linear regression as

OE(k)) [-OE(k- 1) · · · -OE(k- nF) ]θF (21)

θF ) [f1 · · · fnF ]T

Estimate F(q) using the LS method and denote the result by
F̂(q). The filtered output error criterion thus takes the form:

JFOE ) ∑
k)k0+1

k0+N

[FOE(k)]2 ) ∑
k)k0+1

k0+N

[F̂(q)OE(k)]2 (22)

In the evaluation of the output error OE(k), the model
predictions yM(k) should be calculated according to

yM(k)) B̂(q)

Â(q)
u(k- d))G(q, θ̂)u(k)

where Â(q) and B̂(q) denote, respectively, the estimated
polynomials of A(q) and B(q). This requires knowing the data
of y(k) for k e 0 (the so-called initial conditions). However,
these data are often unknown or noise-corrupted, so that the
simplest way would be to replace the unknown initial values
by zeros. On the contrary, the proposed EWMA estimators
involve only known data if the starting instant k0 is chosen to
be a sufficiently larger value.

The best λ value is sought within the interval from 0 to 1 via
minimizing the filtered output error criterion (eq 22). It will be
shown that the proposed method with λ given in this way yields
excellent parameter estimates for almost all types of noise
characteristics. Moreover, the method is hardly affected by the
presence of unknown initial conditions.

The use of the optimal λ is best suited to off-line identification
experiments. For online applications or for simplicity, a good
value for λ can be assigned a priori in accordance with the
following guidelines:

(1) Choose 0.05 e λ e 0.25 if the sampling period (T) is
smaller than one-twentieth of the settling time (tset), i.e., T <
tset/20. Here, the settling time denotes 95% complete response
time for a step change in the process input.

(2) Choose 0.75 e λ e 1 if the sampling period is larger
than one-tenth of the settling time, T > tset/10.

(3) The larger the sampling period is, the larger the λ should
be chosen.

(4) The more the noise characteristics are deviated from the
AR structure (eq 8), the more the λ value should be set smaller
than one.

5. Off-Line Identification Algorithm

The sole use of the EWMA-LS estimator (eq 12) or the
EWMA-IV estimator (eq 16) cannot guarantee the best ef-
ficiency for parameter estimates of the process model in the
face of diverse noise characteristics. Besides, it is sometimes
desirable to obtain not only an AR noise approximation but also
the noise model in the accurate form of
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V(k)) H(q)
D(q)

e(k) (23)

where

D(q)) 1+ d1q
-1 + · · · + dnD

q-nD

H(q)) 1+ h1q
-1 + · · · + hnH

q-nH

Equation 23 together with eq 1 is the so-called Box-Jenkins
(BJ) model. The ARARX model can be obtained for D(q) )
A(q)C(q) and H(q) ) 1, whereas the ARMAX model corre-
sponds to D(q) ) A(q).

We thus propose the following four-step identification
procedure with the weighting constant λ given a priori:

Step 1. Apply the EWMA-LS estimator to find the parameters
ai and bi. Denote the parameter estimates by θ̂LS

(1) and the
corresponding transfer function by

Ĝ(1)(q)) q-dB̂(1)(q)

Â(1)(q)

Step 2. Create the instrumental variables as in eqs 17 and
18:

w(1)(k)) Ĝ(1)(q)u(k)

ψ(1)(k)) [-W1
(1)(k) · · · -WnA

(1)(k) U1(k) · · · UnB
(k) ]T

and obtain the EWMA-IV estimator. Denote the parameter
estimates by θ̂IV

(2) and the corresponding polynomials by Â(2)(q)
and B̂(2)(q).

Step 3. Postulate an AR noise model as given by eq 8 with
nC ) nA + nB. Let

ε̂(k)) Â(2)(q)y(k)- B̂(2)(q)u(k- d)

and rearrange eq 9 as

C(q)ε̂(k)) e(k)

This results in the following regression equation:

ε̂(k)) [-ε̂(k- 1) · · · -ε̂(k- nC) ]θC (24)

θC ) [c1 · · · cnC ]T

Estimate the parameters ci by the LS method and denote the
results by the prefilter Ĉ(q).

Step 4. Calculate three filtered signals based on Ĉ(q) and
Ĝ(1)(q) as

yF(k)) Ĉ(q)y(k)

uF(k)) Ĉ(q)u(k)

wF(k)) Ĉ(q)w(1)(k)

Apply the EWMA-IV estimator again based on the filtered
signals to provide the final parameter estimates as

θ̂IV
(4) ) [ ∑

k)k0+1

k0+N

ψF(k)�F
T(k)]-1 ∑

k)k0+1

k0+N

ψF(k)�F(k) (25)

where

�F(k)) [-Y1
F(k) · · · -YnA

F (k) U1
F(k) · · · UnB

F (k) ]T

ψF(k)) [-W1
F(k) · · · -WnA

F (k) U1
F(k) · · · UnB

F (k) ]T

In the above expressions, �F(k), Yi
F(k), Ui

F(k) and Wi
F(k) are

evaluated in the same way as in eqs 10, 15, and 18 with y, u,
and w replaced by yF, uF, and wF, respectively.

The presented four-step procedure is a substantial improve-
ment over the IV4 method. In addition to the use of the EWMA,
another distinct feature from the IV4 method is that the
instrumental variables ψF(k) employed in the final step are
generated by the transfer function model obtained in step 1,
Ĝ(1)(q), rather than that in step 2. It is found that instrumental
variables created in this way could mitigate the effect of noises
much better for higher-order (nA g 3) systems.

The proposed off-line algorithm entails repeated use of the
preceding four-step procedure to find the optimal λ value that
minimizes the error criterion (eq 22), thus giving the best final
estimates of model parameters âi, b̂i, and ĉi (from eqs 24 and
25). These parameter estimates constitute an ARARX model
of eq 9. Note that with the assumption of the ARARX structure,
the noise of unknown dynamics is approximated by a high-
order AR structure (eq 8). The efficiency of such an approxima-
tion has been discussed by Wahlberg.22

To convert the identified ARARX model to an ARMAX
model, we simply generate an output signal Vw(k) by passing a
simulated white sequence ew(k) through the identified AR
disturbance part, i.e.

Vw(k)) 1

Â(q)Ĉ(q)
ew(k)

Assuming D(q) ) Â(q) in eq 23, the numerator H(q) can then
be secured by applying the LS method to the following
regression equation:

Â(q)Vw(k)- ew(k))∑
j)1

nH

hjew(k- j) (26)

If the exact process plus disturbance model is of the BJ
structure, then the direct conversion from the identified ARARX
model is not feasible because the incorrect component of Â(q)
existing in the AR disturbance approximation would impose a
bias on the ARMA disturbance estimate. On the other hand,
the relative error balanced model reduction (REBMR) technique
presented by Wahlberg22 could secure an efficient ARMA model
from a good AR estimate. Hence we employ the REBMR
technique to estimate the ARMA part of the BJ model as
follows:

Step 1. Calculate the output error OE(k) defined in eq 19,
which represents the noise V(k). The prefilter F(q) estimated by
eq 21 constitutes an alternative high-order AR disturbance
estimate:

V(k)) 1

F̂(q)
e(k) (27)

Step 2. Find the ARMA disturbance model by applying the
REBMR technique to the above AR estimate.

6. Model-Based Monitoring

The standard assumptions for most conventional control charts
used in process monitoring are that the process (noise) data when
it is in statistical control are normally and independently
distributed.21 Both the mean and standard deviation are con-
sidered fixed and unknown. An out-of-control condition is a
change or shift in the mean (or standard deviation) to some
different value. Unfortunately, the dynamic feature of eq 23
implies that the process data tend to be autocorrelated over time,
causing the conventional control charts to make too many false
alarms.

One can use the identified disturbance model to remove the
autocorrelation from the noise data V(k) and apply control charts

8242 Ind. Eng. Chem. Res., Vol. 47, No. 21, 2008



to the residuals or prediction errors. Suppose that eq 23 for the
noise disturbance is available. The one-step-ahead prediction
for the noise at time k made at time k - 1 is given by

V̂k-1(k)) [1- D(q)
H(q)]V(k) (28)

The sequence of one-step-ahead prediction errors

x(k))V(k)- V̂k-1(k) (29)

is independently and identically distributed with mean zero.
When the process is under automatic control, the noise observa-
tion data can be calculated by

V(k) ≈ y(k)- yM(k) (30)

where yM(k) is the predicted process outputs by passing the
controller outputs u(k) through the identified process model G(q,
θ̂). For convenience, we recommend using the AR disturbance
model of eq 27 to generate the sequence x(k) for statistical
monitoring:

x(k) ≈ F̂(q)[y(k)- yM(k)] (31)

The EWMA control chart has been frequently applied to
monitor small shifts in the process mean.21,23 The EWMA �(k)
for the prediction errors is defined as

�(k)) ηx(k)+ (1- η)�(k- 1) (32)

The EWMA control chart is constructed by plotting �(k) versus
the sample number k (or time). Inasmuch as x(k) approximates
an independent random sequence with mean zero and variance
σ2, the upper and lower control limits are known as

UCL) x̄+ Lσ√η/(2- η) (33a)

LCL) x̄-Lσ√η/(2- η) (33b)

where the center line is the process target (or mean) xj and L is
the width of the control limits. A point that plots outside of the
control limits indicates an out-of-control condition.

7. Online Identification Algorithm

In this section, we develop a recursive algorithm for online
applications by incorporating the EWMA in eq 10 and the
prefilter in eq 24. Two recursive routines are derived for
updating θ̂ and θ̂C, alternately. The first routine is based on the
EWMA-LS estimator given by eq 12 with the filtered inputs
and outputs, uF(k) and yF(k), as depicted in step 4 of the off-line
algorithm. With fresh data continuously in supply, the estimator
for the model parameters θ at time k can be updated by

θ̂(k)) θ̂(k- 1)+ µF(k)PF(k- 1)�F(k)[�F(k)-�F
T(k)θ̂(k- 1)]

(34)

where the covariance matrix PF and the correction factor µF are

PF(k)) 1
R

[PF(k- 1)- µF(k)PF(k- 1)�F(k)�F
T(k)PF(k- 1)]

(35)

µF(k)) 1/[R+�F
T(k)PF(k- 1)�F(k)] (36)

In the above formulas, the target �F(k) and the regressor �F(k)
are calculated as

�F(k)) (1- λ)�F(k- 1)+ λyF(k);�F(k0)) 0

�F(k)) [-Y1
F(k) · · · -YnA

F (k) U1
F(k) · · · UnB

F (k) ]T

Yi
F(k)) (1- λ)Yi

F(k- 1)+ λyF(k- i);Yi
F(k0)) 0, i) 1, · · · , nA

Ui
F(k)) (1- λ)Ui

F(k- 1)+ λuF(k- i- d);Ui
F(k0)) 0, i)

1, · · · , nB

uF(j)) Ĉ(k-1)(q)u(j), j) k- nB - d, · · · , k- 1- d

yF(j)) Ĉ(k-1)(q)y(j), j) k- nA, · · · , k

The above routine is followed by the second recursive routine
based on eq 24 for updating the prefilter parameters θC as

θ̂C(k)) θ̂C(k- 1)+ µC(k)PC(k- 1)	(k)[ε̂(k)- 	T(k)θ̂C(k- 1)]

(37)

where

PC(k)) 1
R

[PC(k- 1)- µC(k)PC(k- 1)	(k)	T(k)PC(k- 1)]

µC(k)) 1/[R+ 	T(k)PC(k- 1)	(k)]

	(k)) [-ε̂(k- 1) · · · -ε̂(k- nC) ]T

ε̂(j)) Â(k)(q)y(j)- B̂(k)(q)u(j- d), j) k- nC, · · · , k

The two routines can be started by assigning arbitrary initial
values to θ̂ and θ̂C as well as letting PF(k0) ) γFIF and PC(k0) )
γCIC. Note that γF and γC are large positive numbers, and IF

and IC are identity matrices of appropriate dimensions. The
forgetting factor R is introduced in the two routines to ensure
a faster adaptive capability for time-varying systems. A value
between 0.95 and 1 is recommended to avoid the loss of
estimation accuracy. For constant parameter systems, we suggest
setting R equal to one.

8. Model Structure Determination

The identification method discussed so far assumed that the
system orders nA and nB and the delay d were given a priori. In
practice, it is useful to make tests on the adequacy of the model
structure, i.e., the orders and the delay. In the present framework,
we propose a simple testing technique based on the goodness
of fit of the model indicated by the output error criterion JOE in
eq 19. The testing technique is to compare the goodness of fit
of the model for possible orders nA and delays d on the
assumption that nB is equal to nA. In general, JOE decreases with
an increase in nA. As nA is less than or equal to the true order,
a significant reduction in JOE with nA is often observed. On the
other hand, JOE would cease to decrease significantly when nA

becomes greater than the true order. Moreover, if the model
order is chosen correctly, the actual delay would exhibit an
appreciable drop in JOE.

The testing technique can then proceed as follows. First, apply
the identification method to observed data for each nA and d
and calculate the corresponding error function JOE. Second, plot
a curve of logarithm of JOE against nA for each d. Finally,
determine the best estimates of nA and d in light of the above
rules of thumb.

9. Simulation Results

We intend to compare the reliability of the proposed method
against the GLS, IV4, and AFCLOE methods. The reliability
can be evaluated by virtue of statistical properties such as bias,
efficiency, and consistency. We are particularly concerned with
the bias and efficiency properties in the face of various noise
characteristics as well as different choices of sampling period
T and sample size N. No general answer can be given to this
concern. Monte-Carlo studies have been performed, in which
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stochastic systems have been simulated many times with
different realizations of noise sequences. To investigate the effect
of T, we described the discrete-time systems as resulting from
the sampling of a continuous-time process transfer function,
G(s), connected with a zero-order hold. The noise disturbances
V(k) with versatile dynamic characteristics were simulated by
the outputs of continuous-time disturbance transfer functions,
Gv(s), excited by a zero-mean, white sequence e(k). Table 1
enumerates various types of disturbances to be considered. For
open-loop identification, test data were generated with the
process input u(k) as a white binary ( 1 signal. For closed-
loop identification, the system was under feedback control and
test data were generated by a white binary ( 1 external
excitation superposed to the reference. The input u(k) was the
controller output. The variance of e(k) was adjusted so as to
attain the desired noise-to-signal ratio (NSR), defined as the
ratio of the standard deviation of the noise to the standard
deviation of the signal. For each case, the simulation run was
repeated 500 times with different realizations of e(k). The mean
(aji, bji) and standard deviation (σjai, σjbi) of each parameter
estimate were calculated from the 500 simulation runs. We thus
define the following two composite quantities for evaluating
the parameter estimates of the process model as a whole:

percent error in mean)
∑
i)1

nA

|āi - ai|+∑
i)1

nB

|b̄i - bi|

∑
i)1

nA

|ai|+∑
i)1

nB

|bi|

× 100

percent standard deviation)
∑
i)1

nA

σai
+∑

i)1

nB

σbi

∑
i)1

nA

|ai|+∑
i)1

nB

|bi|

× 100

Following the definition of the efficiency by Hsia,6 the
estimation algorithm is said to be efficient if it is unbiased (the
percent error in mean is close to zero) and the percent standard
deviation is as small as possible for finite N. The estimation
algorithm is consistent if both the percent error in mean and
percent standard deviation tend to be zeros as N approaches
infinity.

Example 1

G(s)) (-2s+ 1)e-2Ts

(2s+ 1)(3s+ 1)(4s+ 1)

The first example concerns a third-order process with a
settling time of about 21. Given that nA ) nB) 3, nC ) nF) 6,
and d ) 2, three open-loop cases were postulated to investigate
the effects of the sampling period (T), number of data points
(N), and noise-to-signal ratio (NSR):

Case A: N ) 500, NSR ) 20%
Case B: T ) 0.5, NSR ) 20%
Case C: T ) 0.5, N ) 500

For Case A with a specific type of stochastic disturbance,
500 simulation runs were performed for each sampling period
between 0.2 and 6. The proposed off-line algorithm with the
weighting constant λ determined by minimizing the criterion
(eq 22) is applied to get the optimal parameter estimates for

Table 1. Various Types of Stochastic Disturbances Gv(s)

type I 1/(2s + 1)(3s + 1)2(4s + 1)
type II (-2s + 1)/(2s + 1)(3s + 1)
type III (-2s + 1)/(4s + 1)
type IV 1/(2s + 1)
type V (s + 1)(s2 + s + 1)/(2s + 1)(3s + 1)(4s + 1)
type VI (s2 + 3s + 6)/(2s2 + 3s + 1)
type VII 1
type VIII (0.2s + 1)3/ (0.3s + 1)(0.4s + 1)2

Figure 2. Mean of weighting constant λ versus sampling period for Example
1 subject to various types of stochastic disturbances.

Figure 3. Comparison of identification results of Example 1 by the proposed
off-line algorithm using the optimal λ and λ ) 0.1 by virtue of (a) percent
error in mean versus sampling period; (b) percent standard deviation versus
sampling period.
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each run. Figure 2 plots the mean of the weighting constants
(out of 500 runs) versus the sampling period subject to different
noise disturbances. Note that the trends shown in these curves
confirm the preceding guidelines (3 and 4) for choosing λ. Figure
3 compares the identification results delivered by the optimal λ
with those by λ ) 0.1 for the type I and type IV disturbances,
which exhibit distinct dynamic features as seen in Table 1.
Figure 2 reveals that the optimal λ varies widely with the
sampling period and noise characteristics. On the contrary,
Figure 3 indicates that if the sampling period is less than one,
using a fixed constant of λ ) 0.1 would yield the identification
results comparable to the optimal ones for both types of
disturbances. This event coincides with guideline (1) for
choosing λ. It should be emphasized that this size of T, say,
less than one-twentieth of the settling time, is perhaps the most
important for control purposes.

It is interesting to know how the proposed off-line, GLS, and
IV4 algorithms perform against the sampling period under Case
A with the type I to type III disturbances, which exhibit the
decreasing degree of resemblance to the AR structure (eq 8).
Two issues are studied: bias and efficiency. First, Figure 4 shows

clearly that all the three algorithms become poor if the sampling
period is greater than 3. This is not surprising because the
dynamic features of the process are concealed from the sampled
data for a sampling period larger than about one-seventh of the
settling time. For the type I disturbance that exhibits the highest
degree of resemblance to the AR structure (eq 8), all three
algorithms arrive at unbiased and efficient parameter estimates
for a wide range of T, as seen in Figures 4a and 4b. Note that
the percent error in mean is less than 1% and the percent
standard deviation is less than 4% for 0.2 < T < 3. For the
type II disturbance, Figures 4c and 4d indicate that the proposed
off-line algorithm is valid for the widest range of the sampling
period (0.2 < T < 3), whereas the GLS and IV4 algorithms are
valid for a modest range of the sampling period (0.7 < T < 3).
For the type III disturbance, the proposed algorithm is still valid
for the widest range of the sampling period (0.3 < T < 3),
whereas the other two algorithms essentially fail for almost all
sampling periods as shown in Figures 4e and 4f. As a
consequence, the proposed algorithm is undoubtedly the best
in that it always yields unbiased and the most efficient parameter
estimates for the widest range of the sampling period. For the

Figure 4. Effect of sampling period on identification results by three algorithms for Example 1 subject to (a, b) type I disturbance; (c, d) type II disturbance;
(e, f) type III disturbance.
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GLS and IV4 algorithms, the more the noise characteristics are
deviated from the AR structure (eq 8), the narrower the valid
range of the sampling period becomes.

We further investigate the effect of the number of data points
(N) for Case B subject to the type I to type III disturbances. It
follows from Figure 5 that the proposed algorithm gives rise to
a consistent estimator for all three types of disturbances since
both the percent error in mean and the percent standard deviation
are close to zeros as N is increased to 2000. The parameter
estimator obtained by the GLS algorithm, however, is consistent
only for the type I disturbance. Note that the resulting percent
error in mean is large and does not show any tendency to
decrease with N for the other disturbances. The parameter
estimator given by the IV4 algorithm does show some tendency
to be consistent; nevertheless, it is still much inferior to the
proposed algorithm in practical applications, which is reliable
even for small N.

The reliability of an identification algorithm would eventually
fail as the noise-to-signal ratio (NSR) increases to a large value.
The question is how large the NSR can be tolerated for reliable
estimation under different noise characteristics. Figure 6 com-

pares the three algorithms against NSR between 5% and 100%
for Case C with the type I to type III disturbances. It appears
that the proposed off-line algorithm is the most robust with
respect to NSR because it can lead to unbiased and efficient
parameter estimates at least for NSR less than 50% despite
different noise characteristics. On the contrary, the GLS and
IV4 algorithms yield accurate parameter estimates only for very
small NSR when the noise disturbance exhibits a distinct feature
from the AR structure (eq 8) as evidenced in Figures 6c-f.

Up to now, it was assumed that order nA and delay d were
known a priori. We now apply the proposed testing technique
to determine their exact values in a noisy environment. Figure
7 plots the calculated JOE curves for nA ) 1,...,5 and d ) 1, 2,
3 for a test run subject to the type III disturbance with NSR )
20%, T ) 1, and N ) 500. We observe that the JOE curve for
d ) 2 ceases to drop significantly at nA ) 3, and the
corresponding JOE value is the smallest. Namely, the exact
values of nA and d are thus determined.

The preceding simulation work was focused on the accurate
estimation of the process model under open-loop operation and
subject to zero initial states. Indeed, the high-order AR

Figure 5. Effect of N on identification results by three algorithms for Example 1 subject to: (a, b) type I disturbance; (c, d) type II disturbance; (e, f) type
III disturbance.
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disturbance approximation of eq 8 together with the optimal
weighting constant λ can cope with the multifarious features of
noise dynamics. Furthermore, the off-line algorithm is suited
to open-loop and closed-loop operation with unknown initial
states and can provide a process plus disturbance model other

than the ARARX structure. To avoid the minimization proce-
dure, the λ value can be predetermined if the sampling period
is such that the foregoing selection guidelines are applicable.

As a verification, the off-line algorithm with T ) 0.5, N )
500, and NSR ) 20% was applied to the open-loop and closed-
loop identification of the third-order process under the type V
disturbance (an ARMAX system) and then the type VI
disturbance (a BJ system). For open-loop identification, a white
binary ( 1 external excitation was introduced to the process
input and the λ value was set to 0.1 according to guideline (1)
because of T < tset/20. For closed-loop identification, a white
binary ( 1 external excitation was superposed to the reference
of the proportional-integral control system and the optimal λ
was sought to give the best parameter estimation. Table 2
enumerates the parameter estimates using eq 26 for the ARMAX
model subject to nonzero initial conditions (y(0) ) 0.5, y′(0) )
0.5, y′′ (0) ) -0.5). Each estimate is expressed in terms of the
mean and standard deviation (in the parenthesis) for 500
simulation runs. Table 3 lists the parameter estimates using the
REBMR technique with nF ) 6 for the BJ model subject to
zero initial conditions. The reduced order of the ARMA
disturbance part of the BJ model is chosen to be 2, as inferred
from the dominant number of the resultant six singular values.
For instance, the singular values of one realization are 3.5948,
0.4535, 0.0575, 0.0448, 0.0385, and 0.0000, revealing that
merely the first two states are dominant. The identification

Figure 6. Effect of NSR on identification results by three algorithms for Example 1 subject to (a, b) type I disturbance; (c, d) type II disturbance; (e, f) type
III disturbance.

Figure 7. Curves of JOE versus nA for Example 1.
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results demonstrate that the off-line algorithm works well for
both systems under open-loop or closed-loop operation. Fur-
thermore, using the fixed λ would still arrive at unbiased and
efficient estimation, though the efficiency, as evaluated by the
standard deviation, is slightly worse than the use of the optimal
λ. The effect of nonzero initial conditions seems negligible.

Example 2

G(s)) 0.254s+ 1.8198

s2 + 0.3567s+ 0.2426

This second-order example has a settling time of 17. When
sampled at T ) 1, the continuous-time system gives rise to the
discrete-time system employed by Ljung8 for verifying the IV4
method. We first identify this example online using the
developed recursive EWMA algorithm, as given in eqs 34-37.
This is useful for applications such as adaptive control. The
algorithm with nA ) nB) 2, nC ) 4, d ) 0, T ) 0.5, and λ )

Table 2. Open-Loop and Closed-Loop Parameter Estimates for the ARMAX System Subject to Nonzero Initial Conditions

exact open loop with λ ) 0.1 closed loop with optimal λ

Â(q) 1 - 2.508q-1 + 2.094q-2 -0.582q-3 1 - 2.506((0.0212)q-1 + 2.089((0.0416)q-2 -
0.580((0.0208)q-3

1 - 2.506((0.0170)q-1 + 2.090((0.0330)q-2 -
0.580((0.0163)q-3

B̂(q) -0.0079q-1 + 0.0041q-2 + 0.0078q-3 -0.0079((0.0008)q-1 + 0.0039((0.0018)q-2 +
0.0079((0.0012)q-3

-0.0080((0.0006)q-1 + 0.0041((0.0012)q-2 +
0.0079((0.0008)q-3

D̂(q) A(q) Â(q) Â(q)
Ĥ(q) 1 - 1.971q-1 + 1.429q-2 - 0.362q-3 1 - 1.931((0.0503)q-1 + 1.389((0.103)q-2 -

0.332((0.113)q-3
1 - 1.933((0.0496)q-1 + 1.394((0.101)q-2 -

0.336((0.112)q-3

Table 3. Open-Loop and Closed-Loop Parameter Estimates for the BJ System Subject to Zero Initial Conditions

exact open loop with λ ) 0.1 closed loop with optimal λ

Â(q) 1 - 2.508q-1 + 2.094q-2 - 0.582q-3 1 - 2.507((0.0266)q-1 + 2.091((0.0517)q-2 -
0.581((0.0254)q-3

1 - 2.502((0.0307)q-1 + 2.083((0.0589)q-2 -
0.577((0.0286)q-3

B̂(q) -0.0079q-1 + 0.0041q-2 + 0.0078q-3 -0.0079((0.0008)q-1 + 0.0040((0.0012)q-2 +
0.0079((0.0009)q-3

-0.0078((0.0008)q-1 + 0.0040((0.0014)q-2 +
0.0079((0.0009)q-3

D̂(q) 1 - 1.385q-1 + 0.472q-2 1 - 1.385((0.101)q-1 + 0.475((0.0952)q-2 1 - 1.386((0.101)q-1 + 0.474((0.0966)q-2

Ĥ(q) 1 - 0.330q-1 + 0.375q-2 1 - 0.339((0.0960)q-1 + 0.354((0.0443)q-2 1 - 0.338((0.0969)q-1 + 0.355((0.0434)q-2

Figure 8. Real-time estimation results for Example 2 under feedback
control by (a) the proposed online algorithm; (b) the recursive AFCLOE
method.

Figure 9. Monitoring of Example 2 based on EWMA control charts of (a)
noise V(k); (b) prediction errors x(k).
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0.1 leads to real-time estimation results based on a closed-loop
simulation run corrupted by the type VII disturbance with NSR
) 20%. The test run under proportional-integral control was
excited by a white binary ( 1 input signal with the transition
time interval 2T. It follows that the four parameter estimates
given by the algorithm adapt fast to their true values as shown
in Figure 8a, whereas convergence of the recursive AFCLOE
algorithm seems rather slow and inaccurate as seen in Figure
8b.

Next we apply the EWMA control charts based on eqs 31-33
with η ) 0.1 and L ) 2.7 to the data samples from Example 2
subject to the type VIII disturbance. A test run under proportional-
integral control was performed to obtain the process model and
the prefilter F(q) with nF ) 6 using the off-line algorithm with
T ) 0.25, N ) 200, NSR ) 50%, and λ ) 0.1. A small T was
chosen because of fast disturbance dynamics. Thereafter, the
process was switched to generalized minimum variance control
at sample number zero and a shift of small magnitude in the
mean was introduced at sample number 100. The EWMA
control chart based directly on the noise data calculated by eq
30 is depicted in Figure 9a. Because the noise data are highly
autocorrelated, it is not surprising to see that the control chart
causes many false alarms when the process is in statistical
control. On the other hand, the EWMA control chart based on
the prediction errors calculated by eq 31 signals at sample
number 116 as shown in Figure 9b, so we would conclude
correctly that the process is out of control.

10. Conclusions

It has been shown that the proposed EWMA method tends
to preserve good statistical properties of unbiasedness, efficiency,
and consistency for a wide variety of process and noise
dynamics in open-loop or closed-loop operation. In particular,
the method is very robust with respect to the noise level as well
as different choices of the sampling period and sample size.
Consequently, it can identify a reliable ARARX, ARMAX, or
BJ model from limited data acquisition. The resultant process
plus disturbance model has proved to be very effective in
removing the autocorrelation in process data for accurate
statistical process monitoring.

The proposed method outperforms the conventional GLS and
IV4 techniques in that the two techniques cannot secure
satisfactory statistical properties if the disturbance dynamics
consist of significant zeros or are much faster than the process
dynamics. Moreover, if the experiment time is limited, the two
techniques could be neither unbiased nor efficient because of
the inevitable selection of a small sampling period or a small
sample size.

A reliable recursive algorithm is provided for real-time
applications. The λ value can be predetermined in accordance
with the suggested guidelines. In the presence of significant
noise, the recursive algorithm converges much faster to the true
parameter estimates than the AFCLOE algorithm.

In practice, the information content in the external signals,
input signal design, knowledge of model structure, and controller
tuning would play a big role in the effectiveness of the proposed

identification method. These issues have not been thoroughly
resolved and merit further study.
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