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This article presents an iterative method to deal with the identification of continuous-time single-input/single-
output Hammerstein and Wiener systems, characterized by a series connection of a nonlinear static element
and a linear dynamic element. The internal variable between the nonlinear and linear elements is inaccessible
to measurements so that simultaneous parameter estimation of the two elements cannot be easily achieved in
a least-squares fashion. This difficulty could be circumvented by updating the internal variable at each iteration
step. A two-stage estimation algorithm, in conjunction with moving-horizon smoothing and a solution-guiding
mechanism, is established to ensure the convergence and accuracy of the iterative method in the face of
linear structure mismatch, high static nonlinearity with an unknown characteristic, and severe noise. At the
first stage, a good description of the static nonlinearity is given by a multisegment function or a polynomial
in an iterative manner. Linear structure mismatch is allowed for this stage of estimation. At the second stage,
the identification problem is reduced to a simple linear one with the internal variable gained at the first stage.
A noniterative procedure can then be applied to determine accurately the structure and parameters of the
linear dynamic element. Studies with simulated and experimental examples demonstrate that the proposed
identification method is valid for a wide variety of nonlinear system dynamics and test conditions.

1. Introduction

Most chemical or industrial processes are nonlinear and
continuous in nature. Identifying such processes as linear models
is a mature task,1,2 but their applications in control techniques
will be limited to a narrow operating region. When the operating
region becomes wider, the nonlinearity of the process cannot
be ignored and hence a control design based on a linear model
will be inappropriate. A better alternative is to identify the
nonlinear process as a block-oriented model, which consists of
a nonlinear static element and a linear dynamic element
connected in series.3 The linear dynamic block can either be
preceded or followed by a nonlinear static block, referred to as
a Hammerstein and a Wiener system, respectively. Hammerstein
and Wiener systems are related very closely to linear ones and
can be easily adapted to linear control techniques.4

Some nonlinear processes are essentially of Hammerstein or
Wiener type, such as a nonlinear flow control valve in cascade
with a linear dynamic element5 and a pH neutralization process
involving linear mixing dynamics in a stirred vessel with the
pH characterized by a nonlinear static titration curve.6,7

Moreover, it has been found that Hammerstein or Wiener models
may account for nonlinear effects encountered in many chemical
and industrial processes, such as exothermic chemical reactors,
high-purity distillation columns, furnaces, and heat exchangers.8-10

Boyd and Chua11 have proven that any time-invariant process
with fading memory can be approximated by a Volterra series
representation which in turn can be realized by a Wiener model
with polynomial static nonlinearity.

The type and degree of static nonlinearity in a Hammerstein
or Wiener system is often unknown. Some nonparametric
methods approximate the static nonlinearity by a kernel regres-

sion function.12,13 Although these methods require almost no
prior knowledge about the system nonlinearity, the complex
forms of the nonlinear estimates make their applications limited
in practice.14 To overcome this problem, many parametric
methods adopt a parametrization of the static nonlinearity by a
polynomial of finite degree,15,16 a two-segment polynomial,17,18

a piecewise linear map,19-22 or a neural network.23-25 The
construction of such approximations demands knowing certain
prior information about the system nonlinearity. If selected
improperly, for example, using a polynomial fit for saturation
characteristics, the nonlinear approximations might become poor,
rendering the simultaneous or subsequent estimation of the linear
dynamics erroneous.

A number of identification methods for Hammerstein or
Wiener models have been elaborated to separate the identifica-
tion of the nonlinear static part from that of the linear dynamic
part. Inevitably, these methods involve a special design of the
test input signal that enables the decoupling of the linear and
nonlinear parts. Su and McAvoy23 proposed to use two sets of
test data, steady-state and transient, to identify the nonlinear
static and linear dynamic parts of a discrete Hammerstein model,
respectively. Sung26 suggested using a special test signal for
continuous-time Hammerstein model identification. Bai27 and
Jia et al.28 applied the same test signal to identify a discrete
Hammerstein model. The test signal is composed from a
pseudorandom binary sequence (PRBS) input followed by a
random multistep input. Notably, the PRBS input, that shifts
between two levels, could excite only the linear dynamic part
and hence produce a data set suited to its sole identification.
With the linear dynamic part given, the multistep input then
excites a data set for the identification of the remaining nonlinear
static part. These methods are disadvantageous in that their
algorithms cannot adapt to Wiener model identification and the
requirements on the specific test signal cause extra implementa-

* To whom correspondence should be addressed. E-mail: shhwang@
mail.ncku.edu.tw. Tel.: 886-6-2757575 ext. 62661. Fax: 886-6-2344496.

Ind. Eng. Chem. Res. 2009, 48, 1495–1510 1495

10.1021/ie800149w CCC: $40.75  2009 American Chemical Society
Published on Web 01/05/2009

D
ow

nl
oa

de
d 

by
 N

A
T

IO
N

A
L

 C
H

E
N

G
 K

U
N

G
 U

N
IV

 o
n 

Se
pt

em
be

r 
16

, 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 J

an
ua

ry
 5

, 2
00

9 
| d

oi
: 1

0.
10

21
/ie

80
01

49
w



tion complexity as well as inefficient utilization of the entire
test data. Huang et al.9 presented a method to identify a
continuous-time Wiener model using a symmetric relay test
input. Lee and Huang10 extended the method to identify a
continuous-time Hammerstein model. Both methods employ an
optimization procedure to find an inverse of the static nonlin-
earity that restores symmetric cycling of the output of the relay
test. Once the inverse is obtained, the identification problem is
reduced to a linear one and the linear dynamic element can be
identified by any available linear technique. Some constraints
on the methods are that the nonlinear static element must be
invertible, the computation burden is quite heavy, and the
identified linear model should be of low order owing to limited
information provided by the relay test.

Simultaneous parametric identification of the nonlinear and
linear elements for Hammerstein and Wiener systems has the
advantages of implementation easiness and efficient utilization
of the test data. However, it suffers from the situation that the
internal variable between the nonlinear and linear parts is
inaccessible to measurements. As a result, the regression
equation may not be linear-in-parameters and the conventional
least-squares algorithm is not easily applicable. This problem
could be circumvented by an iteration procedure with the internal
variable updated at each iteration step. The major difficulty is
that the convergence of parameter estimates to the actual values
is not always warranted due to the coupling between the
nonlinear static and linear dynamic parts. The convergence
properties are affected by the assumed form of static nonlin-
earity, degree of nonlinearity, selection of the exciting input,
initial guess of the internal variable, linear structure mismatch,
and measurement noise.20,24,27,29,30 Voros17,18,22 developed
several iterative methods to identify discrete Hammerstein and
Wiener models, where the static nonlinearity is approximated
by a two-segment polynomial or a multisegment piecewise linear
function. Using the decomposition technique, the regression
equation can be made linear-in-parameters for iterative estima-
tion. Voros’s methods will be faced with a serious convergence
problem when the structure of the linear element is incorrectly
selected, the static nonlinearity cannot be described well by the
assumed nonlinear function, or the measured output is corrupted
by severe noise.

In this work, an iterative method is presented to identify a
continuous-time single-input/single-output (SISO) Hammerstein
or Wiener model by approximating the static nonlinearity by
an appropriate function and providing effective formulae for
updating the internal variable. A two-stage estimation algorithm,
incorporating moving-horizon smoothing and a solution-guiding
mechanism, is developed to ensure the convergence and
accuracy of the iterative method in the face of linear structure
mismatch, high static nonlinearity with an unknown character-
istic, and severe noise. The first stage of the algorithm arrives

at a good description of static nonlinearity by virtue of a
multisegment function or a polynomial in an iterative manner.
The second stage of the algorithm reduces the identification
problem to a simple linear one with the internal variable acquired
previously. A noniterative procedure can then be applied to
determine the structure and parameters of the linear dynamic
element.

2. Nonlinear SISO System Description for Identification

Here, we consider the identification of continuous-time
Hammerstein and Wiener models as depicted in Figure 1. The
input and output variables, u(t) and y(t), are measurable.
However, the intermediate signal x(t) between the linear dynamic
block and the nonlinear static block, called the internal variable,
is inaccessible to measurements.

2.1. Identification of Hammerstein Models. As seen in
Figure 1a, the linear dynamic element of a Hammerstein model
relating x(t) to y(t) can be described by the following differential
equation:

any
(n)(t)+ an-1y

(n-1)(t)+ · · · + a1y
(1)(t)+ y(t))

bmx(m)(t- d)+ bm-1x
(m-1)(t- d)+ · · · + b1x

(1)(t- d)+
b0x(t- d) (1)

where ai and bi are the model parameters of the linear part, n
and m are system orders, d is time delay, and the superscript (j)
denotes the jth derivative with respect to time. Moreover, assume
that the nonlinear static element relating u(t) to x(t) can be
approximated by a polynomial of degree p:

x(t))∑
i)1

p

ci[u(t)]i (2)

where ci are the model parameters of the nonlinear part. Without
loss of generality from an input-output viewpoint, we can
arbitrarily assign the parameter b0 to be 1 and allow ci to account

Figure 1. Two classes of block-oriented models.

Figure 2. Approximations for static nonlinearity: (a) three-segment function
for the Hammerstein model; (b) four-segment inverse function for the
Wiener model.
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for the static gain of the nonlinear part. Substituting eq 2 into
the x(t–d) term of eq 1 and rearranging the resulting equation
gives rise to

y(t))-∑
i)1

n

aiy
(i)(t)+∑

i)1

m

bix
(i)(t- d)+∑

i)1

p

ci[u(t- d)]i (3)

In some Hammerstein processes, the static nonlinearity cannot
be fitted well by a low-degree polynomial, for example,
saturation characteristics in a flow control valve. On the other
hand, using a high-degree polynomial would increase the
number parameters to be estimated and cause excess errors in
the least-squares estimation. We thus replace the polynomial
in eq 2 by a three-segment function composed from a cubic
polynomial and two straight lines as depicted in Figure 2a. The
internal variable x(t) is then given by the three-segment function
of u(t) as

x(t)) { c4[u(t)- u1]+∑
j)1

3

cju 1
j , if u(t)g u1

c1u(t)+ c2[u(t)]2 + c3[u(t)]3, if u-1e u(t) < u1

c5[u(t)- u-1]+∑
j)1

3

cju-1
j , if u(t) < u-1

(4)

where c4 and c5 are the slopes of the two straight lines on both
sides, and c1 through c3 denote the coefficients of the middle
cubic polynomial passing through the chosen steady state (x )
u ) 0). The two partition points (or break points), u1 and u-1,
divide the nonlinear static range of interest into three subregions
in terms of u(t).

To convert the above relations (eq 4) into a single expression,
we apply the decomposition technique proposed by Voros17 and
define three switching functions hi[u(t)] as

h1[u(t)]) { 1, if u(t)g u1

0, otherwise

h0[u(t)]) { 1, if u-1e u(t) < u1

0, otherwise

h-1[u(t)]) { 1, if u(t) < u-1

0, otherwise
(5)

Note that each switching function is nonzero only in its specific
subregion. It follows that eq 4 can be expressed in more
appropriate form:

x(t))∑
i)1

5

ci fi(t) (6)

where

fi(t)) [u(t)]ih0[u(t)]+ u1
i h1[u(t)]+ u-1

i h-1[u(t)], i) 1, 2, 3

f4(t)) [u(t)- u1]h1[u(t)]

f5(t)) [u(t)- u-1]h-1[u(t)] (7)

Substituting eq 6 into the x(t - d) term of eq 1 yields the
following regression equation:

y(t))-∑
i)1

n

aiy
(i)(t)+∑

i)1

m

bix
(i)(t- d)+∑

i)1

5

cifi(t- d) (8)

Equations 3 and 8 are two regression equations that are linear-
in-parameters provided that y(t), u(t), and x(t) are given. They
constitute the underlying equations for the least-squares param-
eter estimation of a Hammerstein model. Nevertheless, two
problems remain to be solved. First, the internal variable x(t) is

not measurable and hence unknown a priori. Second, time
derivatives of the variables y(t) and x(t) are not available. The
first problem is overcome by an iteration procedure, whereas
the second problem can be eliminated by applying an integral
transform on the differential equation as will be elaborated later.

2.2. Identification of Wiener Models. As seen in Figure
1b, a Wiener model can be described by

anx
(n)(t)+ an-1x

(n-1)(t)+ · · · + a1x
(1)(t)+ x(t))

bmu(m)(t- d)+ bm-1u
(m-1)(t- d)+ · · · + b1u

(1)(t- d)+
b0u(t- d) (9)

and

y(t))∑
i)1

p

ci[x(t)]i (10)

Equation 9 represents the linear dynamic part with the internal
variable x(t) as output, whereas eq 10 approximates the nonlinear
static part by a polynomial of x(t). Without loss of generality,
we let c1 ) 1 and obtain the following expression:

x(t)) y(t)-∑
i)2

p

ci[x(t)]i (11)

Substituting eq 11 into the x(t) term in eq 9 yields

y(t))-∑
i)1

n

aix
(i)(t)+∑

i)0

m

biu
(i)(t- d)+∑

i)2

p

ci[x(t)]i (12)

The approximation by eq 10 does not require that the static
nonlinearity be invertible. However, some Wiener processes,
such as a pH neutralization process, consist of severe static
nonlinearity whose close approximation demands a high-degree
polynomial of x(t). It is found that using a high-degree
polynomial of the unknown x(t) would cause a serious conver-
gence problem in the iteration procedure. As a remedy, we
assume that the static nonlinearity is invertible and seek a
piecewise linear inverse function that calculates x(t) according
to the measured output y(t). For better convergence, a four-
segment piecewise linear function is established as

x(t)) { e2[y(t)- y1]+ e1 y1, if y(t)g y1

e1 y(t), if 0e y(t) < y1

e-1 y(t), if y-1e y(t) < 0
e-2[y(t)- y-1]+ e-1 y-1, if y(t) < y-1

(13)

where ei denote the slopes of the four linear segments. The function
is defined on an interval of y(t) as depicted in Figure 2b, which is
partitioned into four subintervals with three break points, y1, 0,
and y-1. The use of the four-segment piecewise linear function
could greatly improve the convergence properties of the iteration
procedure by mitigating the coupling between the nonlinear and
linear parts. On the contrary, this coupling would become rather
significant if the nonlinear function is defined over the internal
variable x(t) as in eq 10, which will vary widely with the iterative
estimation of the linear dynamic part. Consequently, the use of eq
13 could result in better convergence properties for a wider range
of test data (or higher nonlinearity) than the use of eq 10.

Using the decomposition technique, we define four switching
functions hi[y(t)]:

h2[y(t)]) { 1, if y(t)g y1

0, otherwise

h2[y(t)]) { 1, if 0e y(t) < y1

0, otherwise

Ind. Eng. Chem. Res., Vol. 48, No. 3, 2009 1497
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h-1[y(t)]) { 1, if y-1e y(t) < 0
0, otherwise

h-2[y(t)]) { 1, if y(t) < y-1

0, otherwise
(14)

Without loss of generality, we can let e1 ) 1 and reformulate
eqs 13 and 14 to yield

x(t)) y(t)- ∑
i)-2;i*0,1

2

(1- ei) gi(t) (15)

where

g-2(t)) [y(t)- y-1]h-2[y(t)]

g-1(t)) y(t)h-1[y(t)]+ y-1h-2[y(t)]

g2(t)) [y(t)- y1]h2[y(t)] (16)

Substituting eq 15 into the x(t) term in eq 9 gives rise to

y(t))-∑
i)1

n

aix
(i)(t)+∑

i)0

m

biu
(i)(t- d)+ ∑

i)-2;i*0,1

2

(1- ei) gi(t)

(17)

Equations 12 and 17 constitute the underlying regression
equations for the identification of a Wiener model. They are
both linear-in-parameters if x(t) is updated at each iteration step.

3. Time-Weighted Integral Transform

To deal with the time derivatives in the foregoing regression
equations, which are never available in practice, we extend the
time-weighted integral transform proposed by Hwang and Lin2

for linear systems to nonlinear Hammerstein and Wiener
systems. They defined an lth-order integral transform to convert
a continuous-time signal f(t) over a time interval [ta, tb] into a
real number:

Tl{f(t)})∫ta

tb
w(l)(t) f(t) dt (18)

where w(t) is the weighting function. The zeroth-order transform
for the ith derivative of the signal, f (i)(t), can be derived as

T0{f(i)(t)})∫ta

tb
w(t) f(i)(t) dt, i) 1, 2, · · · , n )

(-1)iTi{f(t)}+∑
j)0

i-1

(-1)j[w(j)(tb) f (i-1-j)(tb)-

w(j)(ta) f (i-1-j)(ta)] (19)

The above formula results from repetitive use of integration by
parts, giving rise to the infeasible summation term that involves
various time derivatives of the signal at ta and tb. To avoid its
evaluation, the weighting function is chosen as

w(t)) (t- ta)
n(t- tb)

n (20)

such that

w(n-1)(ta))w(n-2)(ta)) · · · )w(ta)) 0

w(n-1)(tb))w(n-2)(tb)) · · · )w(tb)) 0

It is apparent that for i e n, the summation term in eq 19 is
eliminated by incorporating the specific form of w(t). As a result,
eq 19 reduces to

T0{f (i)(t)}) (-1)iTi{f(t)}, i) 0, 1, · · · , n (21)

Taking the zeroth-order transform on both sides of eq 8 and
applying eq 21 with f(t) replaced by y(t), x(t), or fi(t) yields a
new regression equation for the Hammerstein model:

T0{y(t)})�h(ta, tb)
Tθh (22)

where the regression vector �h and the parameter vector θh are
given by

�h(ta, tb)
T ) [(-1)n-1Tn{y(t)} · · · T1{y(t)} (-1)mTm{x(t- d)}

· · · -T1{x(t- d)} T0{f1(t- d)} · · · T0{f5(t- d)}]

θh ) [an · · · a1 bm · · · b1 c1 · · · c5]
T

Using eq 21 with f(t) replaced by y(t), x(t), u(t), or gi(t), we
derive a new regression equation for the Wiener model from
eq 17 as

T0{y(t)})�w(ta, tb)
Tθw (23)

where the regression vector �w and the parameter vector θw

are given by

�w(ta, tb)
T ) [(-1)n-1Tn{x(t)} · · · T1{x(t)} (-1)mTm{u(t- d)}

· · · T0{u(t- d)} T0{g-2(t)} T0{g-1(t)} T0{g2(t)}]

θw ) [an · · · a1 bm · · · b0 1- e-2 1- e-1 1- e2]
T

4. Iterative Identification Method with a Two-Stage
Estimation Algorithm

In this section, an iterative identification method for Ham-
merstein and Wiener models is developed based on the two
regression equations (eqs 22 and 23) derived according to the
approximations by the multisegment functions. If a polynomial
function is preferred (e.g., the static nonlinearity is not invertible
for Wiener identification), the corresponding regression equation
can be derived by taking the zeroth-order transform on eq 3 or
12. It will be shown, however, that the use of the multisegment
functions is more reliable for the sake of convergence and
accuracy subject to higher static nonlinearity.

4.1. Moving-Horizon Least-Squares Estimators. Note that
eqs 22 and 23 are dependent upon two arguments, ta and tb.
Therefore, insofar as sufficient data of u(t), x(t), and y(t) are
available, one can generate a preferred number of linear
regression relations by choosing different sets of time intervals
(or moving horizons) for the integral transform. For instance,
the kth regression relation can be created by performing the
integration over a time horizon between ta(k) and tb(k). The
following formulae are recommended to produce N regression
relations for subsequent least-squares estimation:

ta(k)) t0 + λ(k- 1)η, tb(k)) ta(k)+ η, k) 1, 2, · · · , N

(24)

where t0 and tf () ta(N) + η) denote, respectively, the initial
time and final time for data acquisition. Each time horizon starts
from a different ta(k) and has the same horizon length η. The
least-squares estimator for the Hammerstein model, θ̂h, is then
given by

θ̂h ) [∑
k)1

N

�h(k) �h(k)T]-1

∑
k)1

N

[�h(k)∫ta(k)

tb(k)
w(t) y(t) dt] (25)

and that for the Wiener model, θ̂w, can be calculated as

θ̂w ) [∑
k)1

N

�w(k)�w(k)T]-1

∑
k)1

N

[�w(k)∫ta(k)

tb(k)
w(t) y(t) dt] (26)

1498 Ind. Eng. Chem. Res., Vol. 48, No. 3, 2009
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The least-squares estimators require three arguments, η, λ,
and N, to be set a priori. The arguments λ and N are determined
by the computation capacity and total data available, which are
not crucial to estimation accuracy. A number between 0.05 and
0.2 can be chosen for λ. However, the horizon length η should
be given a sufficiently large value to ensure the convergence of
the estimator at the first stage estimation of the algorithm as
will be elaborated later. It is suggested that η for the first stage
estimation be set between one and two times the process settling
time (95% response time).

4.2. Iteration Procedure Based on Updating the Internal
Variable. The calculation of the two estimators (eqs 25 and
26) demands knowing the internal variable x(t). Though not
measurable, its estimate can be provided with a prescribed
updating formula at each iteration step. For the Hammerstein
model, it is natural to employ eq 6 describing the nonlinear
static part to compute x(t) at the (k + 1)th step as

x̂(t;k+ 1))∑
i)1

5

ĉi(k) fi(t) (27)

where ĉi(k) denotes the parameter estimates of ci at the kth step.
It is not suited to calculate x(t) from the estimated linear dynamic
block because it demands the inversion of the linear block,
which is usually nonexistent.

For the Wiener model with an invertible nonlinear static part,
there are two formulae available for updating the internal
variable. The first is obtained by passing the test input u(t)
through the estimated linear dynamic block, that is,

x̂lin(t;k+ 1)) L-1{ U(s) e-ds∑
i)0

m

b̂i(k) si

1+∑
i)1

n

âi(k) si } (28a)

The second can be calculated according to the approximate
inverse of the nonlinear static block given by eq 15 as

x̂nl(t;k+ 1)) y(t)- ∑
i)-2;i*0,1

2

[1- êi(k)]gi(t) (28b)

In the above formulae, x̂lin(t;k+1) and x̂nl(t;k + 1) are two
estimates of x(t) at the (k + 1)th iteration step, âi(k), b̂i(k), and
êi(k) are model parameter estimated at the kth step, L-1 denotes
the inverse Laplace transform, and U(s) is the Laplace transform
of u(t).

It is postulated that if the iteration procedure for the Wiener
model does converge to the accurate parameter estimates, the
two estimates calculated by eqs 28a and 28b must be identical
or at least close to each other. However, with the sole use of eq
28a or 28b, the iteration procedure is likely to converge to an
inaccurate solution such that the two estimates of x(t) become
widely different. A better alternative for updating x(t) is then
to use a hybrid estimate given by

x̂(t;k+ 1)) 0.5x̂lin(t;k+ 1)+ 0.5x̂nl(t;k+ 1) (29)

This formula for x(t) takes account of its forward estimate
according to u(t) and its backward estimate according to y(t)
equally, and hence guides the iteration procedure toward an
accurate solution that ensures the consistency of the two x(t)
estimates.

We thus propose an iteration procedure for Hammerstein and
Wiener models as follows. The procedure is started by the least-
squares parameter estimator of eq 25 or 26 with an initial guess
of the internal variable x(t). A convenient guess is the supplied

input u(t) for the Hammerstein model and the measured output
y(t) for the Wiener model. The internal variable x(t) is updated
using eq 27 for the Hammerstein model and eq 29 for the
Wiener model. The procedure is repeated until the estimator
converges.

4.3. Convergence and Accuracy Issues. Two critical issues
arise to evaluate the proposed iteration procedure. That is, it
must ensure not only the convergence to a single solution but
also the accuracy of that solution. Two mechanisms are
developed to deal with these issues. The first mechanism is
moving-horizon smoothing resulting from the selection of
horizon length η. It follows from eqs 18 and 24 that the role of
η is to smooth the data within each specified time horizon. This
could diminish the effect of noise on parameter estimation.
Furthermore, a larger value of η tends to capture more low
frequency (large time scale) information from test input-output
data, thus favoring the accurate estimation of the nonlinear static
part. This allows the iteration procedure to cope properly with
the difficulties of linear structure mismatch, high or peculiar
static nonlinearity, and severe noise. By linear structure
mismatch, we mean that the assumed orders and delay of the
linear dynamic part, that is, n, m, and d, may be incorrect.
Because the correct linear structure is usually unknown a priori,
this mechanism is practically helpful to the accurate approxima-
tion of the static nonlinearity.

In the present identification framework for a Hammerstein
model, the iteration procedure with the choice of a sufficiently
large η would at least guarantee the convergence of the least-
squares estimator as well as the estimation accuracy of the static
nonlinearity. For the identification of a Wiener model, the
convergence problem becomes more stringent and the smoothing
mechanism with a higher η does not suffice to ensure the
convergence of the estimator to the actual values. Such a
situation is often encountered when the range of test data is
wide so that the static nonlinearity becomes high. A plausible
reason is that the internal variable x(t) may vary widely with
the iterative estimation of the linear dynamic part, thus
strengthening the coupling between the nonlinear and linear parts
especially in the presence of linear structure mismatch. An extra
mechanism based on the hybrid x(t) estimate of eq 29 was
recommended previously to guide the iteration procedure toward
the accurate solution that enhances the consistency of the two
x(t) estimates. With the smoothing and solution-guiding mech-
anisms, the iteration procedure for the Wiener model would also
guarantee the convergence of the least-squares estimator as well
as the estimation accuracy of the static nonlinearity.

4.4. Two-Stage Estimation Algorithm. As mentioned previ-
ously, a larger η would render the approximation of the
nonlinear static element more accurate despite linear structure
mismatch. This implies that the converged estimate of the
internal variable x(t) is also reliable. Conversely, the estimation
accuracy of the linear dynamic element is somewhat sacrificed
because much of high frequency information (small time scale)
about test data has been lost. Some remedy should be applied
to recover the estimation accuracy of the linear dynamic part.

Another problem is that the iteration procedure requires
knowing the partition points a priori (this is not the case if a
polynomial is assumed). Although they are usually unknown
in practice, a rough estimate of the partition points can be
inferred from the range of test data. We then recommend a two-
stage estimation algorithm as follows:

Stage 1. Given the partition points (u1, u-1 or y1, y-1), apply
the iteration procedure with a sufficiently large η to test data.
The linear structure (n, m, d) can be quite arbitrarily assumed
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at this stage and hence it might be incorrect. To ensure
convergence and accuracy, it is suggested to set the η value
larger than the process settling time. If the settling time is
unknown, one can try different (from small to large) values of
η until rather consistent solutions become obtainable. The
previous analysis implies that insofar as the selected partition
points are appropriate, the identified nonlinear static part and
the associated estimate of the internal variable x(t) can be
deemed reliable.

Stage 2. Determine the accurate linear structure and estimate
the model parameters of the linear dynamic part based on x(t)
gained at stage 1. Note that with the reliable estimation of the
internal variable, the identification problem can be reduced to
a simple linear one, for which a noniterative procedure is able
to arrive at more accurate parameter estimates for the linear
dynamic part. The method of Hwang and Lin2 for linear systems
can be modified in a trivial way to deal with the resulting linear
identification problem. This method includes determination of
the linear model structure and estimation of the associated model
parameters. For the Hammerstein model, we consider eq 1 with
b0 ) 1, for which the internal variable x(t) is replaced by that
calculated according to eq 27 at stage 1. For the Wiener model,
we consider eq 9 with b0 estimated at stage 1, for which x(t) is
replaced by that calculated according to eq 28b. Because that
calculated by eq 28a contains no new information about the
linear dynamic element, it is not needed in the linear identifica-
tion problem at this stage. To facilitate the estimation accuracy
of the linear dynamic element, a smaller η value should be used.
We suggest setting the η value equal to half the settling time
for the Hammerstein model and equal to the settling time for
the Wiener model. Here, a good estimate of the settling time is
obtainable from the linear dynamic element given at stage 1.

5. Determination of Partition Points

The preceding two-stage estimation algorithm relies on an
appropriate prior selection of partition points. If such information
is not available, a technique is developed to find the optimal
partition points. We first consider the Hammerstein case. It is
known that the partition points u1 and u-1 must lie within the range
of the test input u(t). Assume that this range has an upper bound
uU (>0) and a lower bound uL (<0). Then the optimal partition
points are obtained by finding u1 ∈ [0, uU] and u-1 ∈ [uL, 0] such
that the following prediction error criterion is minimized:

Jh(u1, u-1))∑
k)1

N

[∫ta(k)

tb(k)
w(t) y(t) dt-�h(k)Tθ̂h]2

(30)

where θ̂h is the least-squares estimator of eq 25 for a selected
set of u1 and u-1.

As for the Wiener case, the partition points y1 and y-1 must
lie within the range of the output y(t) with an upper bound yU

(>0) and a lower bound yL (<0). It is found that the error
criterion in a similar form of eq 30 is not sensitive enough to
detect the best partition points especially under noisy conditions.
A better alternative is to seek y1 ∈ [0, yU] and y-1 ∈ [yL, 0]
such that the following output error criterion is minimized:

Jw(y1, y-1))∫t0

tf
[y(t)- yM(t)]2 (31)

where the predicted output yM(t) is obtained by passing x̂lin(t),
the output of the identified linear dynamic element according
to eq 28a, through the identified nonlinear static element as

yM(t)) { [x̂lin(t)- y1] ⁄ ê2 + y1, if x̂lin(t)g y1

x̂lin(t), if 0e x̂lin(t) < y1

x̂lin(t) ⁄ ê-1, if ê-1y-1e x̂lin(t) < 0
[x̂lin(t)- ê-1y-1] ⁄ ê-2 + y-1, if x̂lin(t) < ê-1y-1

(32)

Recall that the prime requirement of the iteration procedure is
to ensure the consistency of x̂lin(t) and x̂nl(t). The criterion of eq
31 means that the measured output y(t), caused by x̂nl(t), and
the predicted output yM(t), caused by x̂lin(t), should be as close
as possible.

Supposing the best partition points and the exact linear
structure are both unknown, the two-stage estimation algorithm
is modified as follows:

Hammerstein Model. First provide a guess of the linear
structure (n, m, d) and apply the two-stage algorithm on the
basis of the polynomial approximation of eq 2 to find the linear
structure. With the newly determined linear structure, apply
repetitively the first stage of the algorithm to search for the best
partition points, u1∈[0, uU] and u-1∈[uL, 0], that minimizes the
criterion of eq 30. Next according to the estimated internal
variable x̂(t) resulting from eq 27, apply the second stage of
the algorithm to find the linear structure and then give the linear
parameter estimates. This search for the partition points can be
repeated until the estimated linear structure converges. Usually
a single search would suffice.

Wiener Model. With a guess of the linear structure, apply
repetitively the first stage of the algorithm to search for the best
partition points, y1∈[0, yU] and y-1∈[yL, 0], that minimizes the
criterion of eq 31. Then according to the estimated internal
variable, apply the second stage of the algorithm to infer the
linear structure and the corresponding linear parameter estimates.
Note that the estimated internal variable is referred to as x̂nl(t)
of eq 28b resulting from the best set of y1 and y-1. With the
newly determined linear structure, conduct another search for
the best partition points. Usually this second search would arrive
at an accurate model. The second search can be avoided if the
initial selection of the linear structure is already desirable. For
example, the exact linear model structure is given or a model
of reduced order is preferred.

6. Simulated and Experimental Examples

Five simulated mathematical and physical examples as well
as one experimental real example have been employed to
demonstrate the effectiveness of the proposed iterative method
in conjunction with the two-stage estimation algorithm. Test
data for the simulated examples were generated by zero-mean
white random signals with standard deviation σ. The test input
was stepwise continuous with switching time Ts and was limited
to a range selected so as to make the identification test feasible.
To simulate noisy situations, measurement noise was added to
corrupt the output data of each test run with the noise-to-signal
ratio (NSR) defined as the standard deviation of the noise
divided by the standard deviation of the measured output.

Example 1.

3y(3)(t)+ 4y(2)(t)+ 4y(1)(t)+ y(t))-x(1)(t- 2)+ x(t- 2)

static nonlinearity of type I: x(t)) u(t)

√0.1+ 0.9[u(t)]2

static nonlinearity of type II: x(t))-[u(t)]2 × [1- e0.7u(t)]

This contrived Hammerstein process comprises a third-order
underdamped linear dynamic element preceded by either of the
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above nonlinear static elements with distinct characteristics. The
linear element has a settling time of about 10. The first
nonlinearity, employed by Wigren,20 simulates a saturation
characteristic, while the second nonlinearity, employed by
Voros,17 is like a kind of dead-zone. For Hammerstein identi-
fication subject to each type of nonlinearity, test data with NSR
) 10% were collected before tf ) 100. The random input signals
were characterized by Ts ) 1, σ ) 1.25, and limits of (2σ.

Table 1 depicts the two-stage identification results as well as
the first stage settings of η, λ, and N for three different cases
(A-C), assuming that the delay d is known. The first stage
settings are quite arbitrarily given so as to meet the data length
of tf ) 100. At the first stage of case A, a polynomial of degree
5 is employed to approximate the nonlinear static behavior, and
a rather incorrect linear structure of n ) 2 and m ) 0 is assumed
a priori. At the first stages of cases B and C, the three-segment
function of eq 4 is chosen, and the partition points u1 and u-1

are determined by a search for the best set. The linear structure
inferred by case A is adopted for case B, whereas a different
linear structure of n ) 3 and m ) 2 is assumed for case C. At
the second stage of the algorithm, η is reduced to half the settling
time estimated at the first stage and N is increased accordingly
to recover the estimation accuracy of the linear dynamic element.

Figure 3 panels a and c reveal that the accurate linear structure
(n ) 3, m ) 1) is obtainable from the second stage estimation
of case A. Note that for each type of static nonlinearity, the
error function defined by the method of Hwang and Lin2 ceases
to decrease significantly for n ) 3 and m ) 1 (as indicated by
an arrow). For case B, the optimal partition points are found
by minimizing the criterion of eq 30 as depicted in Figure 3b,d.
As a result, the two distinct nonlinear static elements are fitted
well as seen in Figure 4, and the parameters of the linear
dynamic element are almost exactly estimated by stage 2 as
enumerated in Table 1. On the other hand, the identified models
are less accurate for case A because of the inadequacy of using
a polynomial approximation. In cases B and C, the proposed
two-stage algorithm yields equally good Hammerstein models,
implying that the algorithm is sensitive to neither the prior
assumption of the linear structure nor the first stage settings of
η, λ, and N.

Figure 5 compares the convergence and accuracy properties
of the proposed iterative method against Voros’s Hammerstein
method17 for the process with the saturation nonlinearity. Since
both methods assume approximations for the static nonlinearity,
it is convenient to evaluate their convergence and accuracy by
virtue of the linear parameter estimation with the exact linear

structure given. For a fair comparison with Voros’s method that
deals with a discrete-time linear part, our continuous-time
parameter estimates, âi and b̂i, are converted to their discrete-
time equivalents, âi′and b̂i′. The accuracy of the linear parameter
estimates are then evaluated by

percent error of linear parameter estimates)

∑
i)1

n

|â′
i - a′

i|+∑
i)1

n

|b̂′
i - b′

i|

∑
i)1

n

|a′
i|+∑

i)1

n

|b′
i|

× 100

The proposed iterative method based on the three-segment
function or a polynomial of degree 5 is applied to the foregoing
test data with the settings of η ) 0.5, λ ) 0.1, N ) 185, and
u(1 ) (0.5. Note that without linear structure mismatch, it is
possible to use a smaller horizon length η to guarantee the
accuracy of both the linear and nonlinear parts. Consequently,
the second stage of the estimation algorithm is not required here.
As expected, the proposed iterative method based on the three-
segment function converges very rapidly to the actual solution
as shown in Figure 5, whereas the method based on a polynomial
converges to a less accurate yet satisfactory solution. Voros’s
method, however, yields rather erroneous parameter estimates
for the linear dynamic part, causing also a failure in approximat-
ing well the static nonlinearity as shown in Figure 4a. Similar
results are observed for the type II static nonlinearity as seen
in Figure 4b.

Example 2.

2x(3)(t)+ 5x(2)(t)+ 4x(1)(t)+ x(t))-2u(1)(t- 1)+ u(t- 1)

static nonlinearity of type III: y(t))

{ x(t)

√0.1+ 0.9[x(t)]2
if x(t)g 0

-[x(t)]2 × [1- e0.7x(t)] if x(t) < 0

static nonlinearity of type IV: y(t)) x(t)

√D+ 0.9[x(t)]2

This contrived Wiener process is composed from a third-
order overdamped linear dynamic element followed by either
of the above nonlinear static elements. The process has a settling
time of about 10. The static nonlinearity of type III, employed
by Voros,18 exhibits distinct features for positive and negative

Table 1. Two-Stage Estimation Results of Example 1

a3 a2 a1 b2 b1 VIF VIFmax

Type I Static Nonlinearity

case A (η ) 15, λ ) 0.1, N ) 55) stage 1 0 7.176 3.702 0 0 60.93 228.0
stage 2 2.910 3.523 3.715 0 -0.862 1.50 1.79

case B ( η ) 15, λ ) 0.1, N ) 55,
u1 ) 0.5, u-1 ) -0.5)

stage 1 2.689 4.023 3.869 0 -1.038 46.22 167.2

stage 2 2.941 4.008 3.930 0 -1.010 1.47 1.85
case C (η ) 10, λ ) 0.2, N ) 43,

u1 ) 0.5, u-1 ) -0.5)
stage 1 2.695 3.972 3.870 0.032 -1.039 30.98 93.06

stage 2 2.950 4.008 3.938 0 -1.008 1.45 1.08

Type II Static Nonlinearity

case A (η ) 15, λ ) 0.1, N ) 55) stage 1 0 6.438 3.669 0 0 58.89 229.7
stage 2 2.799 3.879 3.652 0 -0.923 1.94 2.52

case B (η ) 15, λ ) 0.1, N ) 55,
u1 ) 1.8, u-1 ) -0.8)

stage 1 3.164 4.021 4.109 0 -1.033 25.19 113.6

stage 2 3.078 4.087 4.082 0 -1.010 1.97 2.65
case C (η ) 10, λ ) 0.2, N ) 43,

u1 ) 1.8, u-1 ) -0.8)
stage 1 3.268 4.204 4.124 -0.076 -0.985 22.61 71.17

stage 2 3.056 4.077 4.049 0 -1.009 1.97 2.56
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ranges of x(t). For Wiener identification subject to this type of
nonlinearity, test data with NSR ) 10% were collected before
tf ) 120. Four different cases (D-G) using random input signals
with limits of (3 were considered. The input signals were
specified as Ts ) 1 and σ ) 1.5 for cases D and E and as Ts )
4 and σ ) 0.75 for cases F and G.

Table 2 lists the two-stage identification results as well as
the first stage settings of η, λ, and N, assuming that the delay
d is known. The first stage settings are arbitrarily given so as
to meet the data length of tf ) 120. At the first stages of all
cases, the four-segment piecewise linear function defined by
eq 13 is adopted with the partition points y1 and y-1 determined
appropriately. For case D, an incorrect linear structure of n )
2 and m ) 1 is assumed a priori, whereas for the other cases,
the linear structure inferred by case D is employed. At the
second stage of the algorithm, η is reduced to the settling time
estimated at the first stage and N is increased accordingly to
recover the estimation accuracy of the linear dynamic element.
In cases F and G, test data are rounded to hundredths to check
the adequacy of least-squares solutions involving matrix inversion.

Figures 6a and 6b indicate that for case D, the partition points
can be found by minimizing the criterion of eq 31 from the
first stage estimation and the accurate linear structure (n ) 3,
m ) 1) is obtainable from the second stage estimation. With
the exact linear structure given, new partition points can be
obtained for case E in Figure 6c, leading to better estimation
of the linear part as illustrated in Table 2. The static nonlinearity,
however, is fitted well for both cases because of the use of a
sufficiently large η as evidenced in Figure 7. Figure 6d shows

that the prior assumption of the linear structure can be confirmed
by the second stage estimation of case E.

Here, we are interested in knowing whether the two-stage
algorithm is sensitive to rounding or truncating of test data. It
gives an indication of the accuracy of the parameter estimates
from matrix inversion. Recall that the test data in cases F and
G were rounded to hundredths. The good results seen in Table
2 and Figure 7 indicate that our algorithm is not sensitive to
roundoff errors in the test data and those matrices inverted in
intermediate least-squares calculations are well-conditioned.
Moreover, comparable identification results among the last three
cases imply that our algorithm is not sensitive to the switching
time of the random input signal and the first stage settings of
η, λ, and N.

Figure 8 compares the convergence properties of the proposed
iterative method against Voros’s Wiener method18 for the
process with the type III nonlinearity. The proposed iterative
method based on the four-segment function is applied to the
foregoing test data with the setting of η ) 10. With the linear
structure given exactly, this η ensures the accuracy of both the
linear and nonlinear parts. Consequently, the first stage of the
estimation algorithm converges to the actual parameter estimates
of the linear part. The slow convergence is because of severe
measurement noise. Voros’s method, on the other hand, would
cause an oscillation between two incorrect solutions.

The constant D in the type IV static nonlinearity can be used
to adjust the degree of nonlinearity. Figure 9a reveals that the
smaller the constant D is, the higher the static nonlinearity
becomes. For a given D, the degree of nonlinearity would also
increase with the range of the input test data, namely the

Figure 3. Determination of the linear structure (case A) and partition points (case B) for Hammerstein identification of Example 1: (a, b) type I static
nonlinearity; (c, d) type II static nonlinearity.
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standard deviation σ. It is interesting to analyze the convergence
and accuracy properties of the proposed iterative method in the
face of varying degree of nonlinearity. For this purpose, we
assume the exact linear structure and apply the iterative method
to noise-free test data with the settings of η ) 10, λ ) 0.1, and
N ) 107. It follows that the iterative method based on the four-
segment piecewise linear function could ensure the convergence
to a rather accurate solution (with less than 5% error in linear
parameter estimates) for a very high degree of nonlinearity, as
indicated by the arrow in Figure 9b. The iterative method based
on a polynomial of degree 4, on the other hand, can deal only
with a moderate degree of nonlinearity. Voros’s Wiener method,
however, would fail unless the degree of nonlinearity is pretty
low.

Another issue regarding the adequacy of least-squares solu-
tions given by the two-stage algorithm is the effects of

multicollinearity.31 Multicollinearity means that two or more
predictor variables in a multiple regression equation are highly
correlated, so that the parameter estimates may change erratically
in response to small changes in the equation or the data. A
regression equation with multicollinearity can still provide a
reliable model as a whole, but it may not give accurate
estimation about each individual parameter. The variance
inflation factor (VIF) is a good method of detecting the severity
of multicollinearity.31 Tables 1 and 2 list the VIF calculations
for the algorithm applied to the Hammerstein Example 1 and
the Wiener Example 2 in terms of the mean and the maximum
of VIF factors, VIF and VIFmax. It can be seen that for all cases,
the first stage estimation is confronted by the severe problem
of multicollinearity as revealed by very large values of VIF and
VIFmax. Consequently, the parameters of the linear dynamic part
estimated at stage 1 vary considerably with the number of
predictor variables (changes in the equation) and with the
settings of η, λ, and N (changes in the data). Nevertheless, the
estimated model as a whole is still reliable in approximating
the static nonlinearity for each case as delineated in Figures 4
and 7. On the contrary, the values of VIF and VIFmax become
very small for the second stage estimation. The accurate
parameter estimates at stage 2 given in Tables 1 and 2 verify
that the second stage estimation is indeed advantageous to
recover the accuracy of the linear dynamic part.

In subsequent work, we consider the identification of three
simulated physical examples and one experimental example that
were discussed in literature. The two pH processes are es-
sentially of Wiener type, whereas the simulated reactor process
and the experimental heat exchanger are neither Hammerstein
nor Wiener type. However, our iterative method can provide
good Hammerstein or Wiener models for all four processes.
All operating conditions are listed in Table 3.

Example 3. Consider a pH neutralization process employed
by Nahas et al.32 Acid, buffer, and base streams are mixed in a
tank and the effluent pH is measured. This simulated physical
process involves three nonlinear ordinary differential equations
and a nonlinear algebraic equation for the pH:

dh
dt

) 1
A

(q1 + q2 + q3 -Rvh
0.5)

Figure 4. Various approximations of static nonlinearity by Hammerstein
identification of Example 1: (a) type I; (b) type II.

Figure 5. Convergence and accuracy properties of various iterative
approaches for Example 1 with the type I static nonlinearity.
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dWa4

dt
) 1

Ah
[(Wa1 -Wa4)q1 + (Wa2 -Wa4)q2 + (Wa3 -Wa4)q3]

dWb4

dt
) 1

Ah
[(Wb1 -Wb4)q1 + (Wb2 -Wb4)q2 + (Wb3 -Wb4)q3]

Wa4 + 10pH-14 +Wb4
1+ 2 × 10pH-pK2

1+ 10pK1-pH + 10pH-pK2
- 10-pH ) 0

To identify this buffering pH process at the steady state of (qj3,
pH) ) (15.6 mL/s, 7.026), a white random input of the base flow
q3 with Ts ) 25 and σ ) 25 was employed and the pH was
measured with NSR ) 5%. The input q3 was limited between
0 and 40 mL/s. Assuming the linear structure of n ) 1, m ) 0,
and d ) 0, the proposed two-stage algorithm with the four-
segment piecewise linear function is applied to identify a Wiener
model. The first stage of the algorithm with η ) 260, λ ) 0.1,
and N ) 65 provides a good piecewise linear fit to the static
titration curve by plotting y(t) + pH versus x(t)/b̂0 + qj3

according to eq 13 in Figure 10a. Figure 10b shows the fast
convergence of the linear parameter estimates. The second stage

of the algorithm with η ) 254 confirms the assumed linear
structure and gives rise to the linear dynamic element as

88.26x(1)(t)+ x(t)) 1.11u(t)
This estimate of the process time constant approximates closely
the theoretical value of Ahj/(q1 + q2 + qj3) ) 88.49. Such an
agreement justifies that the pH process is indeed of Wiener type.

Note that it is not possible to describe perfectly the actual
titration curve by the proposed four-segment function. However,
our algorithm allows the linear dynamic part to be identified
pretty well at the second stage insofar as the major trend of the
static nonlinearity can be captured. The identified linear part
given above could arrive at a fairly good estimate of the internal
variable, x̂lin(t). As a result, in the plot of y(t) + pH versus x̂lin(t)/
b̂0 + qj3, numerous data points can be observed to fluctuate
around the actual titration curve as evidenced in the subplot of
Figure 10a. We then propose a simple data smoothing technique
to provide a perfect fit to the titration curve as follows. First
divide the observed data points into a number of neighboring
clusters. Next determine each smoothed data point by averaging

Table 2. Two-Stage Estimation Results of Example 2 with the Type III Static Nonlinearity

a3 a2 a1 b1 b0 VIF VIFmax

case D (η ) 15, λ ) 0.1, N ) 68, y1 ) 1.03, y-1 ) -0.11) stage 1 0 5.171 3.705 -4.216 2.025 149.6 421.1
stage 2 1.586 4.852 3.874 -4.331 2.025 2.07 2.80

case E (η ) 15, λ ) 0.1, N ) 68, y1 ) 1.01, y-1 ) -0.09) stage 1 2.595 5.314 4.063 -3.693 1.932 124.7 359.5
stage 2 1.970 4.929 3.985 -3.960 1.932 2.05 2.79

case F (η ) 12, λ ) 0.05, N ) 175, y1 ) 1.01, y-1 ) -0.09) stage 1 2.908 5.611 4.039 -3.608 2.080 27.48 68.23
stage 2 1.950 4.989 3.980 -4.216 2.080 2.37 3.32

case G (η ) 18, λ ) 0.2, N ) 27, y1 ) 1.01, y-1 ) -0.09) stage 1 7.553 7.534 4.495 -2.441 2.169 39.07 98.75
stage 2 2.128 4.901 4.075 -4.447 2.169 2.21 3.05

Figure 6. Determination of the partition points and linear structure for Wiener identification of Example 2 with the type III static nonlinearity: (a, b) case
D; (c, d) case E.
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the original data points contained within each cluster. Figure
10a verifies that the titration curve can indeed be constructed
perfectly by the smoothed data points.

Example 4. Another pH process, discussed by Palancar et
al.,25 involves the neutralization of acetic acid (AcH), propionic
acid (PrH), and sodium hydroxide (NaOH) in a single tank.
Without buffering, this physical process exhibits a high degree
of nonlinearity and can be simulated as

dCAcH

dt
) 1

V
[qaC0AcH - (qa + qb)CAcH]

dCPrH

dt
) 1

V
[qaC0PrH - (qa + qb)CPrH]

dCNaOH

dt
) 1

V
[qbC0NaOH - (qa + qb)CNaOH]

CAcH

1+ 10pKAcH-pH
+

CPrH

1+ 10pKPrH-pH
+

10pH-14 -CNaOH - 10-pH ) 0

where qa and qb are the flow rates of acidic and alkaline streams,

V is the tank volume, and C denotes the concentration. For the
sake of identification, a white random signal with Ts ) 0.01
and σ ) 5 was introduce to the base flow qb and the resulting
pH was measured with NSR ) 5%. The input qb was limited
between 5 and 25 mL/s. Assuming n ) 1, m ) 0, and d ) 0,
the proposed two-stage algorithm with the four-segment piece-
wise linear function is applied to identify three Wiener models
corresponding to arbitrarily selected steady states of (qjb,
pH) ) (13.5 mL/s, 6.099), (14.2 mL/s, 9.407), (15 mL/s,
12.739). Note that these steady states are located widely apart
along the static titration curve as seen in Figure 11a. The first
stage of the algorithm with η ) 0.15, λ ) 0.1, and N ) 65
gives similar piecewise linear fits to the static titration curve
by plotting y(t) + pH against x(t)/b̂0 + qjb according to eq 13 in
Figure 11a, while the second stage of the algorithm with η )
0.1 confirms the assumed linear structure and identifies three
linear dynamic elements as

0.0370x(1)(t)+ x(t)) 4.693u(t) for qjb ) 13.5

0.0354x(1)(t)+ x(t)) 6.706u(t) for qjb ) 14.2

0.0363x(1)(t)+ x(t)) 0.3738u(t) for qjb ) 15

Figure 7. Approximations of the type III static nonlinearity by Wiener
identification of Example 2.

Figure 8. Convergence properties of two iterative approaches for Wiener
identification of Example 2 with the type III static nonlinearity.

Figure 9. Convergence analysis of various iterative approaches based on
the Wiener Example 2 with the type IV static nonlinearity: (a) degree of
static nonlinearity; (b) range of test input for convergence.
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It is interesting to note that the two-stage algorithm yields
consistent estimation results for the linear dynamic part despite
appreciable fitting errors given by the four-segment function in
the middle (steep) region of the titration curve. Note also that
the three estimates of the process time constant approximate
closely the theoretical values of V/(qa + qjb) = 0.0361∼0.0342.
Applying the preceding data smoothing technique to the data
points created by plotting y(t) + pH versus x̂lin(t)/b̂0 + qjb,
resulting from any of the above three linear parts, could establish
a perfect fit to the titration curve as elaborated in Figure 11a.
The effectiveness of the identified Wiener models is further

verified by the agreement between the predicted output and the
actual response caused by step-input changes in Figure 11b.

Example 5. Harris et al.33 and Jia et al.28 considered the Van
de Vusse reactions, AfBfC and 2AfD, which were carried
out in an isothermal continuous stirred-tank reactor. The
dynamics of the reactor process can be simulated by

dCA

dt
)-k1CA - k3CA

2 + F
V

(CAf -CA)

dCB

dt
) k1CA - k2CB -

F
V

CB

Notably, CB is the effluent concentration of component B and

Table 3. Nominal Operating Conditions for Simulated and Experimental Examples

Example 3 A ) 207 cm2, Rv ) 8.75 mL/cm/s, pK1 ) 6.35, pK2 ) 10.25, Wa1 ) 3×10-3 M, Wa2 ) -3×10-2 M,
Wa3 ) -3.05×10-3 M, Wb1 ) 0, Wb2 ) 3×10-2 M, Wb3 ) 5×10-5 M, q1 ) 16.6 mL/s, q2 ) 0.55 mL/s

Example 4 qa ) 14.2 mL/s, V ) 1.0 L, C0AcH ) 1 M, C0PrH ) 1 M, C0NaOH ) 2 M, pKAcH ) 4.75, pKPrH ) 4.87

Example 5 CAf ) 10 M, V ) 1.0 L, k1 ) 50 h-1, k2 ) 100 h-1, k3 ) 10 M-1 h-1

Example 6 inlet water temperature ) 30 °C, process water exit temperature ) 62.5 °C,
process water flow rate ) 42% of maximum (1.12 volt1/2), steam flow rate ) 62% of maximum

Figure 10. Identification results of Example 3: (a) approximations of the
titration curve; (b) convergence of the linear parameter estimates.

Figure 11. Identification results of Example 4: (a) approximations of the
titration curve; (b) comparison of model predictions with the actual response
caused by step-input changes.
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F is the inlet flow rate. The concentration measurement is
assumed to be delayed by 0.02 h. The process is nonlinear as
evidenced by the actual steady-state curve given in Figure 12a.
However, it is neither Hammerstein nor Wiener because the
dynamics linearized at different steady-state operation points
exhibit widely distinct characteristics as seen in Figure 12b,
which depicts variations in the settling time of the linearized
system. Moreover, both the steady-state gain and dynamic zero
alter from positive to negative at the operation point of F )
77.5 L/h. This implies that identification involving this critical
operation point is difficult in that a portion of static nonlinearity
would become noninvertible and a drastic change from inverse
response to overshoot would be encountered.

To identify the process at the steady state of (Fj , CjB) ) (34.3
L/h, 1.117 M), a white random sequence with Ts ) 0.02 and σ
) 30 was introduced to the input flow rate F, and the output
concentration CB was measured with NSR ) 5%. The input F
was limited between 0 and 100 L/h. Assuming the linear
structure of n ) 2, m ) 1, and d ) 0.02, the proposed two-
stage algorithm is applied to identify a Wiener model with the
four-segment piecewise linear function. The first stage of the
algorithm converges in 11 iteration steps using the parameters
of η ) 0.1, λ ) 0.1, and N ) 80. The resulting four-segment
piecewise linear function provides a good fit to the entire steady-
state curve except for the region near the critical operation point
as shown in Figure 12a. This exception is not surprising because
this critical region violates the invertible condition stipulated

by the four-segment function for static nonlinearity. The second
stage of the algorithm with η ) 0.05 confirms the assumed linear
structure and gives rise to the linear dynamic element as

5.18 × 10-5x(2)(t)+ 1.46 × 10-2x(1)(t)+ x(t))
-4.91 × 10-5u(1)(t- 0.02)+ 6.80 × 10-3u(t- 0.02)

This estimation of the linear dynamic part leads to a constant
settling time of 0.04 h (ignoring the time delay). Figure 12b
reveals that the dynamic part of the Wiener model converges
to an “average” linear model that approximates the variable
nonlinear dynamics as closely as possible.

Our algorithm can also identify the process as a Hammerstein
model with a polynomial of degree 3. The second stage of the
algorithm with η ) 0.025 gives rise to the linear dynamic
element as

6.67 × 10-5y(2)(t)+ 1.45 × 10-2y(1)(t)+ y(t))
-3.50 × 10-3x(1)(t- 0.02)+ x(t- 0.02)

Figure 12 indicates that the estimation of the nonlinear static
and linear dynamic parts by Hammerstein identification is less

Figure 12. Identification results of Example 5: (a) approximations of the
steady-state curve; (b) variations in the settling time of the linearized system
as well as Hammerstein and Wiener estimates.

Figure 13. Model validation of Example 5: (a) applied input signal; (b)
model predictions versus the actual response.
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accurate than that given by Wiener identification. Figure 12a
also compares the steady-state curve obtained by the method
of Harris et al.33 It can be seen that the model of Harris et al.
is valid only for a narrow operating range.

For model validation, we apply a stepwise input signal that
covers a wide operating range as seen in Figure 13a. Figure
13b compares the actual response against those predicted by
the Hammerstein and Wiener models as well as a linear model,
estimated by the method of Hwang and Lin. It appears that both
the Hammerstein and Wiener models describe the nonlinear
system reasonably well and are far superior to the linear model.
It is worth mentioning that the Hammerstein model as a whole
is good though the estimated static and dynamic parts are less
accurate. Inevitably, all the models, characterized by positive
steady-state gains and inverse response, fail during the final
period of response where the input F is changed from 70 to
100 L/h. Recall that for this particular operating region, the

actual response experiences an appreciable overshoot and the
steady-state gain becomes negative.

Example 6. In addition to the preceding simulated examples,
we apply the proposed method to the experimental data of a
real steam-water heat exchanger acquired by Eskinat et al.34 In
their experimental setup, the steam condensed in a two-pass
shell and tube heat exchanger, thereby raising the process water
temperature. The steam flow rate and process water flow rate
were controlled by pneumatic control valves. A PRBS identi-
fication test with a switching time of 1 min was performed on
the heat exchanger in closed-loop operation. The water flow
rate was changed by varying the setpoint of the controller,
keeping the steam flow constant. The measurements of the
process water exit temperature were fed to a data acquisition
system with a sampling time of 12 seconds. The experimental

Figure 14. Experimental input-output data of the heat exchanger example
obtained from Eskinat et al.34

Figure 15. Identification (before t ) 3000 sec) and model validation (after
t ) 3000 sec) results of Example 6: (a) fitted static behaviors and actual
steady-state data from Eskinat et al.;34 (b) model predictions versus actual
response data.
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input-output data are plotted in Figure 14, where the deviation
variables u and y denote, respectively, changes in the water flow
rate and changes in the water exit temperature. They also
provided steady-state operation data as shown in Figure 15a.

The two-stage algorithm, assuming η ) 144, n ) 2, m ) 1,
and d ) 0 for the first stage, can identify the process as a
Hammerstein model with a polynomial of degree 3 and a Wiener
model with a polynomial of degree 2 based on the training
input-output data during the period of 0 e t e 3000 seconds.
The rest of the data is used to test the validity of the identified
models. It should be mentioned that the selected η value was
obtained by trying different values for η until rather consistent
solutions appeared. The Hammerstein model is estimated as

154.1y(2)(t)+ 54.84y(1)(t)+ y(t))-0.7825x(1)(t)+ x(t)

x(t))-33.30[u(t)]+ 44.47[u(t)]2 + 48.01[u(t)]3

while the Wiener model is estimated as

88.98x(2)(t)+ 42.58x(1)(t)+ x(t)) 204.3u(1)(t)- 27.30u(t)

y(t)) x(t)+ 0.0736[x(t)]2

The estimated static nonlinearities are compared to the steady-
state operation data in Figure 15a. The two nonlinear models
follow the trend in the operation data closely. The simulated
responses of the Hammerstein and Wiener models are compared
with the actual response in Figure 15b. It can be seen that both
models fit the actual response data very well. A close examina-
tion reveals that the Wiener model is better in approximating
the static nonlinearity, while the Hammerstein model is better
in estimating the nonlinear dynamic response. On the contrary,
the linear model, estimated using the method of Hwang and
Lin, results in a considerable discrepancy in the linear and the
actual responses.

7. Conclusions

It has been demonstrated that the proposed iterative method
could identify effectively SISO Hammerstein or Wiener models
for a variety of nonlinear process dynamics and test conditions.
The method incorporates two mechanisms, moving-horizon
smoothing and solution-guiding, to facilitate the convergence
and accuracy of the iteration procedure. The method deals
successfully with the situations of linear structure mismatch,
high static nonlinearity with an unknown characteristic, a wide
range of test data, and severe measurement noise. Under such
situations, the two-stage estimation algorithm can ensure the
adequacy of both the nonlinear and linear parts in a sequential
manner. Moreover, the two-stage algorithm is not sensitive to
the prior assumption of the linear structure and the first stage
settings of η, λ, and N.

The proposed method approximates the static nonlinearity
by a polynomial or a multisegment function. The assumption
of such functions would limit the practical application of the
method when the actual nonlinear static behavior is very
different from the assumed form or is invertible in some
operating region. Nevertheless, several simulated examples
indicate that the proposed method could arrive at good estima-
tion of the linear dynamic part insofar as the assumed function
could catch the major trend in the static nonlinearity. For Wiener
identification, the data smoothing technique can be employed
to provide a more accurate description about the nonlinear static
behavior.

If the process is neither Hammerstein nor Wiener type, the
proposed method is still suited to identifying it as a Hammerstein
or Wiener model. The resultant model is quite useful to the

controller design of the nonlinear process. Note that all four
physical examples (simulated or experimental) can be described
by the identified Wiener models reasonably well. This agrees
with the claim of Boyd and Chua.11
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Nomenclature

A ) cross-sectional area
ai ) model parameters of the linear part in a Hammerstein or

Wiener model
bi ) model parameters of the linear part in a Hammerstein or

Wiener model
Ci ) concentration of species i
ci ) model parameters of the nonlinear part in a Hammerstein or

Wiener model
D ) constant defined in Example 2
d ) time delay
ei ) model parameters of the nonlinear part described by a four-

segment function
F ) inlet flow rate
f ) continuous-time signal
fi ) function formed by hi[u(t)]
gi ) function formed by hi[y(t)]
h ) liquid level
hi[ · ] ) switching function
J ) error criterion
k ) number of regression relations or the iteration step
ki ) reaction rate constant
L-1 ) inverse Laplace transform
m ) system order
N ) total number of regression relations
n ) system order
p ) degree of a polynomial
pKi ) log of equilibrium constant for i
qi ) volumetric flow rate
Rv ) valve coefficient
Tl{ · } ) lth-order integral transform
Ts ) switching time of a test input
t ) time
ti ) time instant denoted by i
U(s) ) Laplace transform of u(t)
u ) input variable
u(1 ) partition points for the three-segment function
V ) volume of liquid in the tank
Wi ) reaction invariant i
w ) weighting function
x ) internal variable
y ) output variable
y(1 ) partition points for the four-segment function
Greek Symbols
� ) regression vector
η ) horizon length
λ ) argument defined in eq 24
θ ) parameter vector
σ ) standard deviation
Superscripts
(j) ) jth derivative with respect to time
T ) transpose of a vector
Subscripts
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h ) Hammerstein
L ) lower bound
lin ) linear dynamic block
M ) model predicted
nl ) nonlinear static block
U ) upper bound
w ) Wiener
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