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a b s t r a c t

A SDG-based reasoning procedure is presented in this paper to qualitatively predict all possible symptom
patterns and also their progression sequences caused by fault propagation in any given process system.
These intrinsic features of the symptom evolution behaviors are then captured with IF–THEN rules in a
two-layer fuzzy inference system. The proposed diagnostic system can be used to identify not only the
locations of fault origins but also their magnitude levels with relatively high resolution. Numerical sim-
ulation studies have been carried out to verify the feasibility and effectiveness of the proposed approach.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Due to the need to minimize operating costs while maintaining
economic production scale, the chemical plants built in recent
years are in general much larger and more complex than they used
to be and, furthermore, their processing units are often designed to
be operated under more extreme conditions. Thus, the develop-
ment of hazard identification and risk reduction measures for such
processes has become an important issue of industry-wide con-
cern. To this end, the on-line fault diagnosis system should be con-
sidered as an useful tool. Notice that many different methods have
already been proposed in the literature, e.g., the state estimator [1],
the expert system [2] the neural network [3], the signed–directed
graph (SDG) [4], the principal component analysis (PCA) [5], fuzzy
system [6] and the frequency-domain analysis [7], etc. Generally
speaking, these methods could be classified into three distinct
groups [8–10], i.e., the model based approaches, the knowledge
based approaches, and the data-analysis based approaches.

The SDG-based fault diagnosis strategy is the focus of present
study. In essence, the digraph models have been used in the past
to qualitatively characterize the causal relations among faults, fail-
ures and their effects [8,9,11,12]. The advantage of this modeling
approach is mainly due to the fact that the SDG can almost always
be constructed on the basis of simple causal relations. On the other
hand, the more accurate mathematical models and the more case-
specific knowledge bases are required to be built from the mea-

surement data and operational experiences obtained in the course
of every possible accident. This need is often not satisfiable. Thus, a
qualitative model such as the digraph is actually more useful in
these circumstances.

Although the SDG models are easy to develop, they are essen-
tially static in nature. As a result, the available fault identification
techniques are implemented mostly on the basis of steady-state
symptoms, e.g., Maurya et al. [11]. Notice that the effects of fault(s)
and/or failure(s) usually propagate throughout the entire system
sequentially and dynamically. A series of intermediate events
may occur before the inception of catastrophic consequences.
Thus, the performance of a diagnosis scheme should be evaluated
not only in terms of its correctness but also its timeliness. To en-
hance the diagnostic efficiency, it becomes necessary to consider
the precedence order (in time) between the fault propagation ef-
fects implied in every input–output connection in digraph.

Extensive studies have been carried out in recent years to develop
fault identification techniques by incorporating both the eventual
symptoms and also their occurrence order into a fuzzy inference
system (FIS) [13–16]. Basically, this approach can be implemented
in two stages, i.e., (1) the off-line preparation stage and (2) the
on-line implementation stage. In the preparation stage, a SDG-
based qualitative simulation procedure is used to predict the fault
propagation paths (FPPs) and the symptom occurrence orders
(SOOs) resulting from various fault origins. The corresponding
candidate patterns of on-line symptoms are then translated into
IF–THEN inference rules for assessing the occurrence possibilities
of fault origins. In the next stage, the on-line measurement data
are normalized and used as inputs to FIS for computing all
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corresponding occurrence indices in real time. This fault diagnosis
approach has been implemented successfully in a number of loop-
free processes [14] and also in systems with feedback and/or feed
forward control loops [13,15,16]. Finally, an extended version of
qualitative simulation method has been developed in Chen and
Chang [16] to differentiate not only the locations of fault origins
but also their magnitude levels. As a result, the FIS can be made
to function effectively even in the multiple-fault scenarios.

Despite the aforementioned advancements, there is still room
for significant improvement. Notice that, for every possible fault
origin, essentially all the IF–THEN rules derived from correspond-
ing candidate patterns are supposed to be included in the FIS and
these rules are fired indiscriminately in any on-line application.
This practice could reduce diagnostic resolution if the symptom
patterns associated with two or more fault origins happen to be
identical. On the other hand, it should also be noted that some of
these predicted candidate patterns may not show up in an actual
fault propagation scenario and the observable ones can be found
to appear one-at-a-time in a definite evolution sequence. This con-
cept of pattern evolution sequence (PES) has been briefly brought up
in Chen and Chang [15], but was utilized in an ad hoc fashion with-
out specific guidelines. Clearly, there is a need to develop a reliable
approach to compute the total number of pattern evolution se-
quences and to generate a complete list of such sequences auto-
matically. The intrinsic features of the symptom evolution
behaviors can then be captured accordingly with the fuzzy infer-
ence rules. Thus, in order to further enhance the diagnostic perfor-
mance of FIS, these PES-related issues have been thoroughly
addressed in the present study.

The rest of this paper is organized as follows. For illustration
purpose, the SDG-based qualitative simulation procedure for pre-
dicting the fault propagation behaviors is reviewed and also the
special representations of simulation results, i.e., FPPs and SOOs,
are described in Section 2. The intrinsic features embedded in
the symptom evolution behaviors are analyzed in the next section.
Also included are the mathematical formulas and computer algo-
rithms for generating all possible candidate patterns and pattern
evolution sequences. In Section 4, both the single-layer and two-
layer inference structures are outlined. The IF–THEN rules in the
former system are constructed only on the basis of candidate pat-
terns, while the PESs are also incorporated in the latter. Finally,
extensive numerical simulation results are presented at the end
of this paper to demonstrate the feasibility and effectiveness of
the proposed approach.

2. Fault propagation mechanisms

By definition, an accident is a rarely-occurred unplanned event
or a sequence of such events. Some of the catastrophic accidents
may not be experienced even in a long-existing plant. Thus, in
any realistic system, it is obviously not feasible to collect and ana-
lyze the historical data of all possible scenarios. As a result, it be-
comes necessary to predict the fault propagation behaviors with
qualitative simulation techniques. A brief review of the SDG-based
approach [4,12,17–21] is presented in the sequel:

2.1. Qualitative simulation procedure

The effects of a fault/failure in a process system can be easily
simulated on the basis of a SDG model. It should be noted that
the fault origins can usually be associated with the primal nodes,
i.e., nodes with no inputs. A set of five values, i.e., {�10,�1,0,+1,
+10 }, may be assigned to each node to qualitatively represent devi-
ation from the normal value of corresponding variable. ‘‘0” means
that it is at the normal steady state. The negative values are used to

denote the lower-than-normal states and the positive values sig-
nify the opposite. The absolute values of non-zero deviations, i.e.,
1 or 10, can be interpreted qualitatively as ‘‘small” and ‘‘large”,
respectively. Notice also that the causal relation between the devi-
ations in two variables can be characterized with a directed arc and
the corresponding gain. Again each gain may assume one of the
aforementioned five qualitative values, i.e., 0, ±1 and ±10. The out-
put value of any arc can be computed with the gain and its input
value according to the following equation:

vout ¼
g � v in if � 10 6 g � v in 6 þ10
þ10 if g � v in > þ10
�10 if g � v in < �10

8><
>: ð1Þ

where g, vin and vout denote respectively the gain, input and output
values. It is obvious that the deviation values of all variables af-
fected by one or more fault origin can always be computed with this
formula, but the time at which each deviation occurs is indetermin-
able. Without the reference of time in the SDG-based simulation re-
sults, it can nonetheless be safely assumed that the change in an
input variable should always occur earlier than those in its outputs.

2.2. Fault propagation path

Due to the unique information structure generated with the
above approach, a special representation has been designed to
characterize the predicted fault propagation behaviors. This repre-
sentation is referred to as the fault propagation path (FPP). For the
sake of brevity, only the FPPs associated with the tree-shaped SDGs
are presented here. It should be emphasized that all other digraph
configurations, e.g., feedback loops and feed forward loops, can be
converted to equivalent trees and the following analysis is still
applicable in these cases [16].

To fix idea, let us consider the SDG given in Fig. 1a. The fault
propagation path associated with a ‘‘small” disturbance D(+1) can
be found in Fig. 1b. Notice first that the structures of SDG and
FPP in this case are identical. Each node in FPP represents a previ-
ously nonexistent fault effect. Every effect is specified with a qual-
itative value +1 or �1, which can be computed according to Eq. (1).
The precedence order of two different effects is specified with the
connecting symbol �, i.e., the effect on its left must occur earlier
than that on the right. The sequence of conditions on the same
propagation path should be interpreted as the order of occurrence
(in time) of different effects resulting from the given fault origin.
However, the order of two distinct events located on two separate
branches should be considered as indeterminable.

On the other hand, the FPP resulting from a ‘‘large” disturbance
is obtained in this study by assuming that a finite time constant is
needed to characterize the transient response of an output variable

D X
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+1

+1

+1

Z
-1

D(+1) X(+1)

Y(+1) Z(-1)

U(+1)

a

b

Fig. 1. (a) A fictitious tree-shaped SDG model; (b) The corresponding fault
propagation path resulting from D(+1).
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to the disturbance in its input. Thus, an additional constraint is
introduced to facilitate an accurate description of the fault propa-
gation behaviors in this situation, i.e., the smaller deviation of a pro-
cess variable must occur before reaching a larger one of the same
variable. By incorporating this requirement, the branches in the
tree-shaped FPP in Fig. 1b can be transformed to the ones given
in Figs. 2a and b, respectively. This composite propagation mecha-
nism will later be expressed with a simplified format, i.e., Fig. 2c,
throughout this paper.

2.3. Symptom occurrence order

Notice that, in practice, not all the events included in FPPs can
be monitored with existing on-line instruments. Thus, the FPPs
should be further reduced by merging every pair of measured var-
iable and its measurement signal in the propagation paths and
then eliminating the unmeasured ones. This resulting symptom
occurrence order (SOO) can be used as the basis for developing
the fuzzy inference system (FIS) for fault diagnosis.

3. Symptom evolution behaviors

3.1. Candidate patterns

If all symptoms in a SOO can be observed simultaneously, then
it is certainly logical to confirm the existence of corresponding
fault origin(s). However, since the fault propagation behaviors
are dynamical in nature, the resulting on-line measurements
should vary with time during the incipient stage. In this work,
the collection of on-line symptoms observed at any instance in
the fault propagation process is referred to as a candidate pattern.
It is obvious that every candidate pattern can be considered as
an evidence for fault identification. Thus, it is important to enu-
merate all possibilities and assign each one of them an appropriate
confidence level.

In a previous study, Chen and Chang [16] derived a set of formu-
las to compute the total number of candidate patterns (NCP) asso-
ciated with any tree-shaped composite SOO. For the sake of
completeness, these formulas are given below:

NCP ¼N Pð0Þðm; n0Þ
n o

¼
mþ n0 � 1

m

� �

þ
Xm

~j1¼1

m�~j1 þ n0 � 1

m�~j1

 !YB0

~i1¼1

N Pð0;
~i1Þð~j1;n0;~i1

Þ
n o

ð2Þ

where P(0)(m,n0) denotes the initial path of a tree-shaped composite
SOO having m disturbance levels and n0 measurement nodes;

Pð0;
~i1Þð~j1; n0;~i1

Þ denotes the ı̃1th branch path connecting to the end
of P(0)(m,n0) with ~j1 disturbance levels and n0;~i1

measurement
nodes; B0 denotes the total number of these branch paths. Finally,
notice that Nf�g is a counting operator and the counting operation
is carried out recursively, i.e.,

N Pð0;i1 ;i2 ;...;ikÞðjk;n0;i1 ;i2 ;...;ik Þ
n o

¼
jk þ n0;i1 ;i2 ;...;ik � 1

jk

� �
þ
Xjk

~jkþ1¼1

jk �~jkþ1 þ n0;i1 ;i2 ;...;ik � 1

jk �~jkþ1

 !

�
YB0;i1 ;i2 ;...;ik

~ikþ1¼1

N Pð0;i1 ;i2 ;...;ik ;
~ikþ1Þð~jkþ1;n0;i1 ;i2 ;...;ik ;~ikþ1

Þ
n o

ð3Þ

where k = 1, 2, . . . and Pð0;i1 ;i2 ;...;ik ;
~ikþ1Þð~jkþ1; n0;i1 ;i2 ;...;ik ;~ikþ1

Þ is the ı̃k+1th
branch path (with ~jkþ1 disturbance levels and n0;i1 ;i2 ;...;ik ;~ikþ1

measure-

ment nodes) connecting to the end of path Pð0;i1 ;i2 ;...;ikÞðjk; n0;i1 ;i2 ;...;ik Þ
(with jk disturbance levels and n0;i1 ;i2 ;...;ik measurement nodes). If
there are no further branches connected to the end of the branch
path Pð0;i1 ;i2 ;...;ikÞðjk;n0;i1 ;i2 ;...;ik Þ, i.e., B0;i1 ;i2 ;...;ik ¼ 0, then

Y0

~ikþ1¼1

½�� ¼ 1 ð4Þ

As an example, let us again consider the tree-shaped SDG presented
in Fig. 1a. The FPPs resulting from a large and a small disturbance,
i.e., D(+1) and D(+10), are given in Figs. 1b and 2c, respectively. No-
tice that the value of m should be set to 1 for the SOO caused by
D(+1) in the former case and 2 in the latter case. Let us further as-
sume that all nodes except the disturbance itself are observable
and, thus, n0 = 1, n0,1 = 2, n0,2 = 1, B0 = 2 and B0,1 = B0,2 = 0. The total
number of candidate patterns can be computed according to Eqs.
(2)–(4), i.e.,

� m = 1:

NCP ¼
1
1

� �
þ
X1

~j1¼1

1�~j1

1�~j1

 !Y2

~i1¼1

N Pð0;
~i1Þð~j1;n0;~i1

Þ
n o

¼ 1þN Pð0;1Þð1;2Þ
n o

N Pð0;2Þð1;1Þ
n o

¼ 1þ ð2þ 1� 1Þð1þ 1� 1Þ ¼ 7

� m = 2:

NCP ¼
2
2

� �
þ
X2

~j1¼1

2�~j1

2�~j1

 !Y2

~i1¼1

N Pð0;
~i1Þð~j1;n0;~i1

Þ
n o

¼ 1þN Pð0;1Þð1;2Þ
n o

N Pð0;2Þð1;1Þ
n o

þN Pð0;1Þð2;2Þ
n o

N Pð0;2Þð2;1Þ
n o

¼ 1þ ð2þ 1� 1Þð1þ 1� 1Þ
þ ð3þ 2� 1þ 1� 1Þð1þ 1� 1þ 1� 1Þ ¼ 25

All corresponding patterns are listed in Tables 1 and 2 respec-
tively. In the large disturbance scenario, since two distinct devia-
tion levels of the same variable are expressed with separate

D(+10) X(+10)

Y(+10) Z(-10)

U(+10)

X(+10)

X(+1)

Y(+10) Z(-10)

Y(+1) Z(-1)

X(+10)

X(+1)

U(+10)

U(+1)

a

b

c

Fig. 2. (a) The fault propagation mechanism caused by D(+10) along a branch of the
tree-shaped SDG in Fig. 1a; (b) The fault propagation mechanism caused by D(+10)
along another branch of the tree-shaped SDG in Fig. 1a; (c) The composite fault
propagation mechanism.

Table 1
Candidate patterns derived from the FPP in Fig. 1b.

No. X Y Z U

1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 1 �1 0
5 1 0 0 1
6 1 1 0 1
7 1 1 �1 1
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nodes in the composite SOO, a reconciliation criterion is needed to
determine their net effects at various instances. This criterion is
stipulated in our work according to the definition of precedence or-
der, i.e., the latest symptom should always override all the previous
ones in a candidate pattern. The candidate patterns in Table 2 are
obtained by enumerating all possible patterns according to
Figs. 2a and b and then applying the aforementioned overriding
principle.

3.2. Pattern evolution sequences

It is important to point out that not only the collection of cur-
rent on-line symptoms (i.e., the candidate patterns) but also their
evolution sequence in the past could be used as evidences for fault
identification. Let us consider the FPP presented in Fig. 1b and the
corresponding candidate patterns in Table 1. It can be deduced by
inspection that the disturbance D(+1) can result in only one of the
following three evolution sequences of symptom patterns:

PES1 : 1 � 2 � 3 � 4 � 7 ð5Þ
PES2 : 1 � 2 � 3 � 6 � 7 ð6Þ
PES3 : 1 � 2 � 5 � 6 � 7 ð7Þ

Notice that every pattern in the above equations is represented with
a numerical label and the corresponding symptoms can be found in
Table 1. Each series of patterns is referred to in this paper as a pat-
tern evolution sequence (PES). Thus, the task of fault diagnosis can
also be viewed as that of identifying a match between the historical
record of on-line symptoms and one of the PESs. Finally, it can be
observed from the above PESs that the number of occurred symp-
toms is increased one-at-a-time in the candidate patterns. In other
words, the fewer the number of symptoms included in a pattern the
earlier it can be observed on-line. As a result, the aforementioned
PESs can be expressed in an alternative form according to the pre-
cedence order of newly observed symptoms, i.e.,

PES1 : Xðþ1Þ � Yðþ1Þ � Zð�1Þ � Uðþ1Þ ð8Þ
PES2 : Xðþ1Þ � Yðþ1Þ � Uðþ1Þ � Zð�1Þ ð9Þ
PES3 : Xðþ1Þ � Uðþ1Þ � Yðþ1Þ � Zð�1Þ ð10Þ

A set of generalized formulas have been derived in this study for
computing the total number of pattern evolution sequences (NPES)
corresponding to any tree-shaped SOO with a single disturbance le-
vel, i.e., m = 1. By using the notations in Eqs. (2)–(4) to characterize
the tree branches in a SOO, these formulas can be written as

NPES ¼K Pð0Þð1;n0Þ
n o

ð11Þ

where, Kf�g is a counting operator for a branch path in SOO. This
operation should be carried out recursively, i.e.,

K Pð0;i1 ;i2 ;...;ikÞð1;n0;i1 ;i2 ;...;ik Þ
n o
¼ R Pð0;i1 ;i2 ;...;ikÞð1;n0;i1 ;i2 ;...;ik Þ

n o

�
YB0;i1 ;i2 ;...;ik

~ikþ1¼1

K Pð0;i1 ;i2 ;...;ik ;
~ikþ1Þð1;n0;i1 ;i2 ;...;ik ;~ikþ1

Þ
n o

ð12Þ

In this equation, the value of Rf�g is determined according to the
following formula:

R Pð0;i1 ;i2 ;...;ikÞð1;n0;i1 ;i2 ;...;ik Þ
n o

¼

PB0;i1 ;...;ik

~ikþ1¼1

L Pð0;i1 ;...;ik ;
~ikþ1Þð1;n0;i1 ;...;ik ;~ikþ1

Þ
n o" #

!

QB0;i1 ;...;ik

~ikþ1¼1

L Pð0;i1 ;...;ik ;
~ikþ1Þð1;n0;i1 ;...;ik ;~ikþ1

Þ
n o

!

ð13Þ

where the operator Lf�g in the above equation is

L Pð0;i1 ;i2 ;...;ikÞð1;n0;i1 ;i2 ;...;ik Þ
n o

¼ n0;i1 ;i2 ;...;ik þ
XB0;i1 ;i2 ;...;ik

~ikþ1¼1

L Pð0;i1 ;i2 ;...;ik ;
~ikþ1Þð1; n0;i1 ;i2 ;...;ik ;~ikþ1

Þ
n o

ð14Þ

If there are no further branches connected to the end of the branch
path Pð0;i1 ;i2 ;...;ikÞðn0;i1 ;i2 ;...;ik Þ, i.e., B0;i1 ;i2 ;...;ik ¼ 0, then Eqs. (12) and (14)
can be evaluated, respectively, with Eq. (4) and the following
equation:

X0

~ikþ1¼1

½�� ¼ 0 ð15Þ

Notice that a derivation is presented in Appendix A to show the
validity of the aforementioned formulas. Let us again use the FPP
in Fig. 1b as an example. The total number of PESs can be calculated
with Eqs. (11)–(15), i.e., NPES ¼ ð2þ1Þ!

2!1!
¼ 3, which is exactly the same

as that determined by inspection. In order to provide additional de-
tails in implementing the proposed calculation steps, let us consider
the more complicated SOO in Fig. 3 and the corresponding candi-
date patterns in Table 3. The specific computation procedure in this
case can be expressed as follows:

NPES ¼
ð2þ 1þ 1Þ!

2!1!1!
¼ 12

It should also be noted that the total PES number associated with a
multi-level SOO can be determined with essentially the same ap-
proach. However, it is extremely cumbersome to express the corre-

Table 2
Candidate patterns derived from the composite FPP in Fig. 2c.

No. X Y Z U

1 0 0 0 0
2 1 0 0 0
3 1 1 0 0
4 1 1 �1 0
5 1 0 0 1
6 1 1 0 1
7 1 1 �1 1
8 10 0 0 0
9 10 1 0 0
10 10 1 �1 0
11 10 0 0 1
12 10 1 0 1
13 10 1 �1 1
14 10 10 0 0
15 10 10 �1 0
16 10 10 0 1
17 10 10 �1 1
18 10 10 �10 0
19 10 10 �10 1
20 10 0 0 10
21 10 1 0 10
22 10 1 �1 10
23 10 10 0 10
24 10 10 �1 10
25 10 10 �10 10

A(a) C(c)

E(e) F(f)

B(b)

D(d)

Fig. 3. A fictitious SOO.
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sponding computation procedure with explicit formulas in this sit-
uation. A PES generation algorithm has thus been developed to gen-
erate all possible sequences and also to compute NPES on the basis of
a given composite SOO. This algorithm and a pseudo code are in-
cluded in an electronic annex (see Annex 1 in the online version
of this article). In the case of the tree-shaped SOO in Fig. 2c, a total
of 91 sequences can be identified. They are listed in another elec-
tronic annex (see Annex 2) according to the candidate patterns de-
fined in Table 2.

4. Fuzzy inference system

The intrinsic features of the aforementioned symptom variation
behaviors are described with IF–THEN rules in the present work.
Each rule is used to evaluate a confidence measure toward con-
firming the corresponding fault origin. A single-layer fuzzy infer-
ence system can be built solely on the basis of candidate
patterns, while the diagnostic resolution can be further enhanced
in a two-layer system with additional information extracted from
the pattern evolution sequences. The detailed construction proce-
dures of these two types of inference systems are presented as
follows:

4.1. Single-layer inference structure

Every candidate pattern can be encoded into an IF–THEN rule to
evaluate the existence potential (or occurrence index cs) of the cor-
responding fault origin. Specifically, the premises of this rule are
constructed on the basis of the qualitative deviation values of the
symptoms in the given pattern. These deviations are translated
into linguistic values according to an interpretation function Fin,
i.e.,

FinðdjÞ ¼

LN if dj ¼ �10
SN if dj ¼ �1
ZE if dj ¼ 0
SP if dj ¼ þ1
LP if dj ¼ þ10

8>>>>>><
>>>>>>:

ð16Þ

In the above equation, dj denotes the deviation value of the jth mea-
surement (j = 1,2, . . .,NM); LN, SN, ZE, SP and LP denote respectively
the linguistic values of �10, �1, 0, +1 and +10.

If the on-line symptoms are identical to those in a SOO, then it is
highly possible that they are caused by the corresponding fault ori-
gin. To assert such a belief, the conclusion ‘‘cs is OCR” should be
used in the inference rule. Here, OCR is the linguistic value of the
occurrence index cs reflecting the highest confidence level in con-
firming the existence of the root cause(s). On the other hand, it is

reasonable to disregard the possibility of a fault if none of the
symptoms in the corresponding SOO can be observed. Thus, the
conclusion in the inference rule for this scenario should be ‘‘cs is
NOC”, where NOC is the linguistic value representing the lowest
confidence. The conclusions of the remaining rules should be
uncertain. Naturally, the confidence level of a particular candidate
pattern in confirming the existence of the root cause(s) should be
proportional to the number of matched (or occurred) symptoms
in SOO. In this study, the latter value ‘ is used directly as a qualita-
tive measure of confidence. Since the events associated with differ-
ent values of the same variable may be included as different nodes
in a SOO, the latest among them always overrides all the previous
ones in the on-line measurements. To account for the overridden
symptoms implied in a candidate pattern, the following formula
is used in this work for computing the confidence level ‘:

‘ ¼
XNM

j¼1

cðdjÞ ð17Þ

Table 3
Candidate patterns derived from the SOO in Fig. 3.

No. A B C D E F

1 0 0 0 0 0 0
2 a 0 0 0 0 0
3 a 0 c 0 0 0
4 a b c 0 0 0
5 a 0 c d 0 0
6 a b c d 0 0
7 a 0 c 0 e 0
8 a b c 0 e 0
9 a 0 c d e 0
10 a b c d e 0
11 a 0 c 0 e f
12 a b c 0 e f
13 a 0 c d e f
14 a b c d e f

Table 4
Fuzzy inference rules constructed according to the candidate patterns in Table 2.

No. IF THEN

X Y Z U cs

1 ZE ZE ZE ZE NOC
2 SP ZE ZE ZE UCT1

3 SP SP ZE ZE UCT2

4 SP SP SN ZE UCT3

5 SP ZE ZE SP UCT2

6 SP SP ZE SP UCT3

7 SP SP SN SP UCT4

8 LP ZE ZE ZE UCT2

9 LP SP ZE ZE UCT3

10 LP SP SN ZE UCT4

11 LP ZE ZE SP UCT3

12 LP SP ZE SP UCT4

13 LP SP SN SP UCT5

14 LP LP ZE ZE UCT4

15 LP LP SN ZE UCT5

16 LP LP ZE SP UCT5

17 LP LP SN SP UCT6

18 LP LP LN ZE UCT6

19 LP LP LN SP UCT7

20 LP ZE ZE LP UCT4

21 LP SP ZE LP UCT5

22 LP SP SN LP UCT6

23 LP LP ZE LP UCT6

24 LP LP SN LP UCT7

25 LP LP LN LP OCR

Table 5
PESs derived from the SOO in Fig. 3.

No. IF THEN

A B C D E F

1 ZE ZE ZE ZE ZE ZE cp1 is OCR
2 Fin(a) ZE ZE ZE ZE ZE cp2 is OCR
3 Fin(a) ZE Fin(c) ZE ZE ZE cp3 is OCR
4 Fin(a) Fin(b) Fin(c) ZE ZE ZE cp4 is OCR
5 Fin(a) ZE Fin(c) Fin(d) ZE ZE cp5 is OCR
6 Fin(a) Fin(b) Fin(c) Fin(d) ZE ZE cp6 is OCR
7 Fin(a) ZE Fin(c) ZE Fin(e) ZE cp7 is OCR
8 Fin(a) Fin(b) Fin(c) ZE Fin(e) ZE cp8 is OCR
9 Fin(a) ZE Fin(c) Fin(d) Fin(e) ZE cp9 is OCR
10 Fin(a) Fin(b) Fin(c) Fin(d) Fin(e) ZE cp10 is OCR
11 Fin(a) ZE Fin(c) ZE Fin(e) Fin(f) cp11 is OCR
12 Fin(a) Fin(b) Fin(c) ZE Fin(e) Fin(f) cp12 is OCR
13 Fin(a) ZE Fin(c) Fin(d) Fin(e) Fin(f) cp13 is OCR
14 Fin(a) Fin(b) Fin(c) Fin(d) Fin(e) Fin(f) cp14 is OCR
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where c(dj) denotes the number of symptoms occurred in the jth
measured variable when its current value is dj. In other words, ‘ is
the total number of nodes in SOO which have been confirmed with
measurement data.

A second interpretation function Fout can be defined accordingly
to determine the linguistic values of occurrence index, i.e.,

Foutð‘Þ ¼
NOC if ‘ ¼ 0
OCR if ‘ ¼ ‘max

UCT‘ otherwise

8><
>: ð18Þ

where ‘max is the confidence level associated with the fully-devel-
oped candidate pattern of the given SOO. As an example, let us con-
sider the candidate patterns in Table 2. These patterns can be
converted to the fuzzy inference rules presented in Table 4 with
the aforementioned interpretation functions.

4.2. Two-layer inference structure

As mentioned before, every candidate pattern is encoded into
an inference rule in the single-layer system to evaluate the occur-
rence index of the corresponding fault origin. Thus, a set of differ-
ent scenarios may not be distinguishable if some of the
corresponding symptom patterns are the same. In these circum-
stances, the additional insights concerning PESs can be utilized to
enhance diagnostic resolution. The two-layer inference structure
is used in the present study for this purpose. A measure of agree-
ment between the current on-line symptoms and every candidate
pattern can be computed in the first layer. For illustration conve-

Table 6
Second-layer inference rules for the 4th pattern of the 1st PES in Eq. (16).

No. IF THEN

cp1m cp2m cp3m cp7m pes1

1 OCR OCR OCR OCR UCT3

2 OCR OCR NOC OCR UCT2

3 OCR NOC OCR OCR UCT2

4 OCR NOC NOC OCR UCT1
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Fig. 4. (a) The process flow diagram of a single-tank storage system with feed-forward level-control loop and (b) the SDG model of single-tank storage system.

Table 7
Candidate patterns caused by fault origins m1(+1) and m3(+1) in Example 1.

No. s8 s7

Origin 1: m1(+1)
1 0 0
2 1 0
3 1 1
4 10 10

Origin 2: m3(+1)
1 0 0
20 0 1
3 1 1
4 10 10
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nience, let us consider the SOO in Fig. 3 and the corresponding can-
didate patterns in Table 3. At any instance, the agreement measures
in this example (say cp1–cp14) can be evaluated with the IF–THEN
rules given in Table 5. The maximum values of these measures
(cpm

1 ; cpm
2 ; . . . ; cpm

14) and their occurrence times (tm
1 ; t

m
1 ; . . . ; tm

14) are
updated and also recorded every time a new batch of on-line mea-
surements are taken. It should also be noted that twelve pattern
evolution sequences can be generated according to the proposed
algorithm, i.e,

PES1 : 1 � 2 � 3 � 7 � 11 � 13 � 14
PES2 : 1 � 2 � 3 � 5 � 9 � 13 � 14
PES3 : 1 � 2 � 3 � 5 � 6 � 10 � 14
PES4 : 1 � 2 � 3 � 7 � 9 � 13 � 14
PES5 : 1 � 2 � 3 � 5 � 9 � 10 � 14
PES6 : 1 � 2 � 3 � 7 � 9 � 10 � 14
PES7 : 1 � 2 � 3 � 7 � 11 � 12 � 14
PES8 : 1 � 2 � 3 � 4 � 8 � 12 � 14
PES9 : 1 � 2 � 3 � 4 � 6 � 10 � 14
PES10 : 1 � 2 � 3 � 7 � 8 � 12 � 14
PES11 : 1 � 2 � 3 � 7 � 8 � 10 � 14
PES12 : 1 � 2 � 3 � 4 � 8 � 10 � 14

ð19Þ

Naturally, the occurrence times of the maximum agreement mea-
sures must be consistent with the precedence order given in one
of these PESs. For example, if the first PES in Eq. (19) is the correct
one, then the following inequality constraint must be satisfied

tm
1 6 tm

2 6 tm
3 6 tm

7 6 tm
11 6 tm

13 6 tm
14 ð20Þ

If, at any time, this constraint is violated, the corresponding outputs
of the first-layer inference system, i.e., cpm

1 –cpm
14, should all be reset

to zero to exclude the possibility of PES1.
The second-layer inference system is used for comparing the

time profile of on-line measurement data with each PES, and then
determining a measure of closeness between these two trends. The
inference rules for computing this measure can be constructed on
the basis of the outputs obtained from the first layer. For example,
let us consider the fourth pattern of the 1st PES in Eq. (19), i.e., pat-
tern 7 in Table 3. The corresponding closeness measure (pes1) can be
obtained with the rules given in Table 6. Notice that the rationale

for adopting rule 1 in this table is essentially the same as that for
the inference rule used in a single-layer system to determine the
occurrence index associated with the 7th pattern in Table 3. On
the other hand, the remaining rules in Table 6 are used to reduce
the closeness measure under the condition that one or more previ-
ous pattern in PES is unobservable. It should be stressed that all
other second-layer inference rules for the PESs in Eq. (19) can be
synthesized with essentially the same approach. A complete listing
is omitted here for the sake of conciseness.

Finally, it should be noted that the occurrence index of a fault
origin can be determined by taking the largest value among all
closeness measures. In the case, this value is

cs ¼max pes1;pes2;pes3; � � � ; pes12f g ð21Þ

5. Case studies

To verify the effectiveness of the proposed approach, extensive
numerical simulation studies have been carried out in this work.
Since the thrust of this work is to incorporate the intrinsic features
of symptom evolution behaviors into the fuzzy inference system so
as to enhance diagnostic resolution, the examples presented below
are mainly used to demonstrate the importance of considering pat-
tern evolution sequences in fault diagnosis. The on-line measure-
ment data of all fault propagation scenarios were generated with
SIMULINK [22]. These data were then used in Sugeno’s inference
procedure with the fuzzy-logic module of MATLAB toolbox [23].

5.1. A single-tank level-control system with coupled feed-forward and
feedback loops

Let us first consider the level-control system presented in
Fig. 4a and the corresponding SDG model in Fig. 4b. A ‘‘feed for-
ward” control strategy is adopted here based on the assumption
that only the disturbances affecting the outlet flow rate m2 directly
are important. The fluctuations in downstream pressure and
adjustments of the outlet valve V-02 could be considered as typical
examples of such disturbances. In this control system, the liquid le-
vel is supposed to be maintained at a desired height by adjusting
the input flow according to on-line measurement of the flow rate
at outlet. Although such a control strategy is clearly not realistic,
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Fig. 5. (a) The simulated dynamic responses of m1(+1) and (b) the simulated dynamic responses of m3(+1).
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the present example is nonetheless adopted mainly to demon-
strate the potential benefits of the proposed two-layer inference

structure. Notice that there are three interconnected ‘‘loops” in
the digraph, i.e., (1) a negative feed forward loop with two paths
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Fig. 6. The diagnosis results obtained with a single-layer inference system concerning the assumed fault origin m1(+1). (a) Actual fault origin: m1(+1); (b) Actual fault origin:
m3(+1).
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Fig. 7. The diagnosis results obtained with a single-layer inference system concerning the assumed fault origin m3(+1). (a) Actual fault origin: m1(+1); (b) Actual fault origin:
m3(+1).
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(m2 ? h and m2 ? s7 ? s6 ? m1 ? h), (2) a positive feedback loop
(m2 ? s7 ? s6 ? m1 ? h ? m2), and (3) a negative feedback loop
(m2 ? h ? m2). The mathematical model and the parameter values

used in the numerical simulation studies are listed in Appendix B.1
and Table B.1 respectively. It is assumed in this example that flow
sensors are installed on lines 1 and 2 in this system and, thus, the
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Fig. 8. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin m1(+1). (a) Actual fault origin: m1(+1) and (b) actual fault origin:
m3(+1).
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Fig. 9. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin m3(+1). (a) Actual fault origin: m1(+1); (b) Actual fault origin:
m3(+1).
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measurement signals s8 and s7 can be considered to be available for
fault diagnosis purpose.

Two fault propagation scenarios are studied in this example. A
partial malfunction in the control valve CV-01 is introduced in
the first case to cause an increase in the inlet flow rate in line 1,
i.e., m1(+1), while the initially-closed hand valve V-03 on line 3 is
accidentally opened in the second case to produce an additional in-
put flow, i.e., m3(+1). The SOOs in the aforementioned two scenar-
ios can therefore be predicted with the qualitative simulation
techniques [16], i.e.,

� Origin 1:

s8ðþ1Þ � s7ðþ1Þ � � � � � ½s7ðþ10Þ; s8ðþ10Þ�f
� Origin 2:

s7ðþ1Þ � s8ðþ1Þ � � � � � ½s7ðþ10Þ; s8ðþ10Þ�f

Notice that the final states of the sensor outputs, i.e., s7(+10) and
s8(+10), are the same in both SOOs. The corresponding candidate
patterns are presented in Table 7. Since the SOO in each case forms
a simple single path, there should be only one corresponding PES.
These two PESs can be written respectively as: 1 � 2 � 3 � 4 (ori-
gin 1) and 1 � 20 � 3 � 4 (origin 2). Notice that patterns 2 and 20

in these two sequences are not the same.
The aforementioned two faults were simulated numerically in two

separate runs by setting the valve coefficient C1 to 1.1 at 700 s (sce-
nario 1) and the flow rate m3 to 250 cm3/s at 700 s (scenario 2). The
simulated on-line measurement data are presented in Fig. 5. It can
be observed that the final steady-state values of each measurement
in the two cases are almost the same. In addition, notice that there
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Table 8
Candidate patterns caused by fault origins m5(+10) and m4(�10) in Example 2.

No. s11 s12

Origin 1: m5(+10)
1 0 0
2 1 0
3 1 �1
4 10 0
5 10 �1
6 10 �10
7 1/10 �10

Origin 2: m4(�10)
1 0 0
2
0

0 �1
3 1 �1
4
0

0 �10
5
0

1 �10
6 10 �10
7 1/10 �10
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exists a discontinuity in the first derivative of m2 in each scenario. This
is due to the facts that the outlet flow is gravity driven and the tank is
overflowed at the time when the discontinuity occurs.

The single-layer inference results are shown in Figs. 6 and 7. It is
obvious that the given two fault origins are indistinguishable with
this approach. The misjudgement can be mainly attributed to the
almost identical final steady-state measurements in the two cases.
On the other hand, the diagnostic resolution can be significantly
improved with the two-layer strategy. More satisfactory diagnosis
results in both scenarios can be found in Figs. 8 and 9, respectively.
The fault origins are differentiated by taking into consideration of
the additional information embedded in the PESs. Specifically,

the event m1(+1) must occur before the increase in liquid level
and m2(+1) in the first scenario, while the fault origin m3(+1) in
the second scenario must first cause an increase in liquid level
and m2(+1) before the change in the flow rate of line 1, i.e.,
m1(+1), becomes observable.

5.2. A three-tank storage system with parallel cascade-control loops

The second example is taken from Chen et al. [24]. The flow dia-
gram of this storage system and the corresponding SDG model are
shown respectively in Figs. 10 and 11. A mathematical model has
been built to facilitate simulation studies (see Appendix B.2). The
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Fig. 12. (a) The simulated dynamic responses of m4(�10) and (b) the simulated dynamic responses of m5(+10).
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Fig. 13. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin m5(+10). (a) Actual fault origin: m4(�10) and (b) actual fault
origin: m5(+10).
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model parameters are provided in Table B.2 in the same appendix.
Only two on-line measurements are assumed to be available in this
example. Specifically, they are the outputs of level sensors on tank
2 and tank 3, i.e., s11 and s12.

Two fault origins are studied here: (1) a large additional flow in
line 5, i.e., m5(+10), and (2) a sudden blockage in line 4 causing its
flow to stop, i.e., m4(�10). The corresponding composite SOOs are
given below:
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Fig. 14. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin m4(�10). (a) Actual fault origin: m4(�10) and (b) actual fault
origin: m5(+10).
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� Origin 1:

s11ðþ10Þ �� s12ð�10Þ �� � � � �� ½s11ðþ1=þ 10Þ; s12ð�10Þ�f
� Origin 2:

s12ð�10Þ �� s11ðþ10Þ �� � � � �� ½s11ðþ1=þ 10Þ; s12ð�10Þ�f

The candidate patterns in these two scenarios can be identified
accordingly (see Table 8). By applying the PES generation algo-
rithm, the following sequences can be constructed:

� Origin 1:

1 � 2 � 3 � 5 � 6 � 7
1 � 2 � 4 � 5 � 6 � 7

� Origin 2:

1 � 20 � 3 � 50 � 6 � 7
1 � 20 � 40 � 50 � 6 � 7

The aforementioned faults were simulated in two separate runs
by setting m5 to be 200 cm3/s at 200 s and c2 to be 0 at 200 s,
respectively. The simulated on-line measurements are given in
Fig. 12. Again it can be observed that the steady-state measure-
ments in both cases are almost the same. As a result, the two fault
origins cannot be differentiated with the single-layer inference
scheme. The diagnostic performance can be enhanced with a
two-layer FIS, which is clearly demonstrated in the simulation re-
sults shown in Figs. 13 and 14.

5.3. A CSTR with level and temperature control loops

The final example discussed in this paper is concerned with an
exothermic CSTR reactor with its temperature and level control
loops (see Fig. 15) [25]. It is assumed that there are three measur-
able process variables, the temperature of cooling water (Tc), the
temperature and reactant concentration at the outlet of CSTR (T
and CA). For simplicity, it is further assumed that the variations
in these variables are always accurately reflected in their measure-
ments and, therefore, it is not necessary to distinguish a measured
variable from its measurement signal in the digraph model.
The resulting SDG is given in Fig. 16. The mathematical model
and its parameters are presented in Appendix B.3 and Table B.3,
respectively.

The fault origins considered in this example are: (1) a moderate
disturbance in the input concentration, i.e., CA0(+1), and (2) a small
increase in the upstream temperature of cooling water, i.e., Tc0(+1).
The corresponding SOOs and candidate patterns can be found in
Fig. 17 and Table 9 respectively. Notice that, in the latter table, pat-
tern 7 and pattern 50 are essentially the same. In addition, since Tc

is affected by a disturbance in two opposite directions via T (see
Fig. 18), its value in pattern 6 is really indeterminable and, thus,
all three possibilities (i.e., �1, 0 and +1) are adopted. This indis-
criminate assignment will seriously undermine the diagnostic
capability of single-layer FIS. On the other hand, one can still estab-
lish the PESs resulting from the above two fault origins, i.e.,

� Origin 1:

1 � 2 � 3 � 5 � 6 � 7
1 � 2 � 3 � 4 � 6 � 7

� Origin 2:

1 � 20 � 30 � 40 � 50

These two fault propagation scenarios were simulated by set-
ting the value of CA0 to be 0.97 lb-mol/ft3 at 3 h and Tc0 to be
540 �R at 3 h, respectively, in two separate runs. Due to the afore-
mentioned deficiencies in determining the definite candidate pat-
terns, the diagnosis results obtained with the single-layer system
were in fact erratic. However, from the simulated measurement
data given in Figs. 18 and 19, one can clearly see that the initial
transients of CA and Tc are quite different in the two scenario. This
unique feature provides the two-layer FIS with a good opportunity
to improve diagnostic resolution. Indeed, more satisfactory diagno-
sis results can be obtained on the basis of the same measurement
data and these results are presented in Figs. 20 and 21.
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Fig. 17. (a) The SOO resulting from fault origin CA0(+1) and (b) the SOO resulting
from fault origin Tc0(+1).

Table 9
Candidate patterns caused by fault origins CA0(+1) and Tc0(+1) in Example 3.

No. CA T Tc

Origin 1: CA0(+1)
1 0 0 0
2 1 0 0
3 1 1 0
4 1 1 1
5 1 1 �1
6 1 1 �1/0/+1
7 �1/0/+1 0 0

Origin 2: Tc0(+1)
1 0 0 0
2
0

0 0 1
3
0

0 1 1
4
0 �1 1 1

5
0 �1/0/+1 0 0
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Fig. 18. The simulated dynamic responses of CA0(+1).
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Fig. 19. The simulated dynamic responses of Tc0(+1).
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Fig. 20. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin CA0(+1). (a) Actual fault origin: CA0(+1); (b) Actual fault origin:
Tc0(+1).
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Fig. 21. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin Tc0(+1). (a) Actual fault origin: CA0(+1); (b) Actual fault origin:
Tc0(+1).
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6. Conclusions

The fault propagation paths (FPPs) and symptom occurrence or-
ders (SOOs) caused by fault origins with one or more possible mag-
nitude level are characterized systematically in this study
according to (1) the degree of deviation of each process variable
from its normal state and (2) the occurrence order of the abnormal
deviations. In particular, a SDG-based reasoning procedure is pro-
posed to qualitatively predict all possible symptom patterns and
also their progression sequences. These intrinsic features of the
symptom evolution behaviors are then captured with IF–THEN
rules in a two-layer fuzzy inference system. This system can be
used to identify not only the locations of fault origins but also their
magnitude levels with relatively high resolution. The feasibility
and effectiveness of the proposed diagnostic strategy are clearly
demonstrated in extensive simulation studies.

Appendix A. Derivation of Eqs. (11)–(15)

Let us first consider the simplest tree-shaped SOO, in which two
first-tier branch paths, Pð0;i1Þð1;n0;i1 Þ (i1 = 1,2), are connected to the
end of initial path P(0)(1,n0). Although the occurrence order of
symptoms along P(0)(1,n0) should be unique, the order of events
on the two branched paths, i.e., P(0,1)(1,n0,1) and P(0,2)(1,n0,2), is
not defined exactly. If the two separate symptom occurrence or-
ders specified in the branches are ignored, the total number of all
possible evolution sequences should be (n0,1 + n0,2)!. However,
since the precedence order within a branch path is fixed, the corre-
sponding permutations should be excluded, i.e., the total PES num-
ber in this case should be

NPES ¼
n0;1 þ n0;2ð Þ!
n0;1!n0;2!

ðA:1Þ

Next let us consider the case in which B0 first-tier branches are con-
nected to the initial path. The corresponding PES number can be
determined on the basis of the same rationale, i.e.,

NPES ¼
XB0

i1¼1

n0;i1

 !
!

,YB0

i1¼1

n0;i1 !
� �

ðA:2Þ

The above derivation can be extended to SOOs with both first- and
second-tier branches. For illustration convenience, let us consider a
special case when B0 = B0,1 = B0,2 = 2. After the occurrence of the last
symptom in P(0,1)(1,n0,1), the number of subsequent pattern evolu-
tion sequences can be determined on the basis of Eq. (A.1), i.e.,

Nð0;1ÞPES ¼
n0;1;1 þ n0;1;2ð Þ!
n0;1;1!n0;1;2!

ðA:3Þ

Notice that the SOO associated with one of these subsequent se-
quences can be augmented with that along P(0,1)(1,n0,1) to form a
single-path pseudo SOO. There are of course ðn0;1;1þn0;1;2Þ!

n0;1;1 !n0;1;2 !
such pseudo

SOOs. Similarly, the same approach can be used to compute the
number of PESs which may appear after all symptoms in
P(0,2)(1,n0,2), i.e.,

Nð0;2ÞPES ¼
n0;2;1 þ n0;2;2ð Þ!
n0;2;1!n0;2;2!

¼
n0;2;1 þ n0;2;2

n0;2;2

� �
ðA:4Þ

and to construct the corresponding pseudo SOOs. Therefore, the
aforementioned tree-shaped SOO can be viewed as an ensemble
of different SOOs with two first-tier pseudo branches. The total
number of all corresponding PES number should be

NPES ¼
L0;1 þ L0;2ð Þ!
L0;1!L0;2!

Nð0;1ÞPES Nð0;2ÞPES ðA:5Þ

where L0,1 and L0,2 denote, respectively, the lengths of pseudo SOOs
associated with P(0,1)(1,n0,1) and P(0,2)(1,n0,2). More specifically,

L0;1 ¼ n0;1 þ n0;1;1 þ n0;1;2 ðA:6Þ
L0;2 ¼ n0;2 þ n0;2;1 þ n0;2;2 ðA:7Þ

Finally, it should be noted that the generalized version of Eq. (A.5)
can be derived with exactly the same procedure. These formulas
are expressed in more compact form with the operators Kf�g,
Rf�g and Lf�g defined in Eqs. (9)–(11).

Appendix B. Process models

B.1. Mathematical model used for simulating single-tank system with
feed forward control

A
dh
dt
¼ m1 þm3 �m2 ðB:1Þ

m2 ¼ C2

ffiffiffiffiffi
h1

p
ðB:2Þ

m1 ¼ C1ðm1s þ KcvKc ðm2set �m2Þ½ �Þ ðB:3Þ

Notice that the model parameters in the above equations can be
found in Table B.1.

B.2. Mathematical model used for simulating three tank system with
parallel cascade control

A1
dh1

dt
¼ m1 þm2 �m3 �m4 ðB:4Þ

A2
dh2

dt
¼ m3 þm5 �m6 ðB:5Þ

A3
dh3

dt
¼ m4 þm7 �m8 ðB:6Þ

m3 ¼ c5 � C1

ffiffiffiffiffi
h1

p
ðB:7Þ

m4 ¼ c2 � C2

ffiffiffiffiffi
h1

p
ðB:8Þ

m6 ¼ c3 � C3

ffiffiffiffiffi
h2

p
ðB:9Þ

m8 ¼ c4 � C4

ffiffiffiffiffi
h3

p
ðB:10Þ

h3;set ¼ h3;setðsÞ þ Kc1 ðh2;set � h2Þ þ
1
sI1

Z t

0
ðh2;set � h2Þ

� �
ðB:11Þ

m1 ¼ c1

� m1s þ KcvKc2 ðh3;set � h3Þ þ
1
sI2

Z t

0
ðh3;set � h3Þ

� �� �
ðB:12Þ

Table B.1
Model parameters used in Example 1.

Parameter Definition (Steady state) value

A Cross-section area of tank 5000 cm2

h Height of liquid level in tank 50 cm
m1 Input flow rate 707.11 cm3/s
m2 Output flow rate 707.11 cm3/s
m3 Additional input flow rate 0 cm3/s
C1 Input control valve constant 1
C2 Proportional constant 100 cm2.5/s
Kcv Control valve gain 15 cm3/s %
m2set Set point of output flow rate 707.11 cm3/s
Kc Proportional gain of level controller 0.0667
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Notice that the model parameters in the above equations can be
found in Table B.2.

B.3. Mathematical model used for simulating CSTR reactor system

dV
dt
¼ F0 � F ðB:13Þ

V ¼ Arh ðB:14Þ

rA ¼ k0e�
E

RT CA ðB:15Þ

dCA

dt
¼ F0

V
ðCA0 � CAÞ � rA ðB:16Þ

dT
dt
¼ F0

V
ðT0 � TÞ þ rAð�DHÞ

qCp
� UAðT � TcÞ

VqCp
ðB:17Þ

dTc

dt
¼ Fc

Vj
ðTc0 � TcÞ þ

UAðT � TcÞ
VjqjCj

ðB:18Þ

Fc ¼ Fcs � KT
c ðTset � TÞ þ 1

sT
I

Z t

0
ðTset � TÞ

� �
ðB:19Þ

F ¼ Fs � KH
c ðhset � hÞ þ 1

sH
I

Z t

0
ðhset � hÞ

� �
ðB:20Þ

Notice that the model parameters in the above equations can be
found in Table B.3.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jprocont.2008.11.006.
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Table B.3
Model parameters used in Example 3.

Parameter Definition (Steady state) value

h Height of liquid level in reactor 48 ft
V Reactor volume 4800 ft3

CA0
Reactant concentration in feed 0.47 lb-mol/ft3

T Reactor temperature 537 �R
F0 Feed flow rate 4000 ft3/h
T0 Feed temperature 530 �R
CA Reactant concentration in reactor 0.474 lb-mol/ft3

Tc Outlet Coolant temperature 537 �R
Fc Coolant flow rate 4836 ft3/h
Vj Volume of jacket 385 ft3

k0 Frequency factor 7.08 � 1010/h
E Activation energy 30,000 Btu/lb-mol
R Universal gas constant 1.99 Btu/lb-mol �R
U Overall heat transfer coefficient 150 Btu/h ft2 �R
A Heat transfer area 25,000 ft2

Tc0 Inlet coolant temperature 530 �R
DH Heat of reaction �30,000 Btu/lb-mol
Cp Heat capacity (process side) 0.72 Btu/lbm �R
Cj Heat capacity (coolant side) 1 Btu/lbm �R
q Density of process mixture 50 lbm/ft3

qj Density of coolant 62.3 lbm/ft3

Ar Cross-section area of reactor 100 ft2

KH
c Proportional gain of level controller 10

KT
c Proportional gain of temperature controller 80

sH
I Integral time of level controller 89.286 h

sT
I Integral time of temperature controller 0.6557 h

hset Set point of the level height in tank 48 ft
Tset Set point of the temperature in tank 537 �R

Table B.2
Model parameters used in Example 2.

Parameter Definition (Steady state) value

A1 Cross-section area of tank 1 2000 cm2

h1 Height of liquid level in tank 1 100 cm
A2 Cross-section area of tank 2 2000 cm2

h2 Height of liquid level in tank 2 50 cm
A3 Cross-section area of tank 1 2000 cm2

h3 Height of liquid level in tank 1 50 cm
m1 Input flow rate of tank 1 1500 cm3/s
m3 Output flow rate of tank 1 750 cm3/s
m4 Output flow rate of tank 1 750 cm3/s
m6 Output flow rate of tank 2 750 cm3/s
m8 Output flow rate of tank 3 750 cm3/s
m2 Additional input flow rate to tank 1 0 cm3/s
m5 Additional input flow rate to tank 2 0 cm3/s
m7 Additional input flow rate to tank 3 0 cm3/s
C1,C2 Proportional constants 150 cm2.5/s
C3,C4 Proportional constants 106.07 cm2.5/s
c1 	 c5 Proportional constants 1
Kcv Control valve gain 30 cm3/s %
h2,set Set point of the level height in tank 2 50 cm
h3,set Set point of the level height in tank 3 50 cm
Kc1 Proportional gain of level controller1 2.48
Kc2 Proportional gain of level controller2 1
sI1 Integral time of level controller1 50 � 10�4 s
sI2 Integral time of level controller2 2 � 10�4 s
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