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a b s t r a c t

A SDG-based simulation procedure is proposed in this study to qualitatively predict the effects of one or
more fault propagating in a given process system. These predicted state evolution behaviors are charac-
terized with an automaton model. By selecting a set of on-line sensors, the corresponding diagnoser can
be constructed and the diagnosability of every fault origin can be determined accordingly by inspection.
Furthermore, it is also possible to define a formal diagnostic language on the basis of this diagnoser. Every
string (word) in the language is then encoded into an IF-THEN rule and, consequently, a comprehensive
fuzzy inference system can be synthesized for on-line diagnosis. The language generation steps are illus-
trated with a series of simple examples in this paper. The feasibility and effectiveness of this approach
has been tested in extensive numerical simulation studies.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The on-line fault diagnosis system has been widely recognized
as an indispensable tool for enhancing process safety. For the pur-
pose of building such systems, the qualitative cause-and-effect
models, e.g., the signed directed graphs (SDGs), are used in the
present study to characterize fault propagation mechanisms. The
advantage of this modeling approach is mainly due to the fact
that the causal relations in process systems can almost always
be established on the basis of generic engineering principles, e.g.,
see Lapp and Powers (1977), Chang and Hwang (1992), Maurya,
Rengaswamy, and Venkatasubramanian (2003a, 2003b) and Chen
and Chang (2007). Notice that a wide variety of diagnosis methods
has already been reported in this literature. Generally speaking,
they could be classified into three distinct groups, i.e., the model
based approaches, the knowledge based approaches, and the data-
analysis based approaches (Venkatasubramanian, Rengaswamy, &
Kavuri, 2003; Venkatasubramanian, Rengaswamy, Yin, & Kavuri,
2003). However, most of them require the measurement data
and/or operational experiences obtained in the course of every
possible accident. This requirement is often not satisfiable.

Although the causal models are easy to develop, it should be
noted that they are basically static in nature. As a result, many avail-
able fault identification techniques are implemented on the basis
of steady-state symptoms only, e.g., Maurya, Rengaswamy, and
Venkatasubramanian (2006). However, the effects of fault(s) and/or
failure(s) usually propagate throughout the entire system dynam-
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ically in sequence (Maurya, Rengaswamy, & Venkatasubramanian,
2007). A series of intermediate events may occur before the incep-
tion of catastrophic consequences. Thus, the performance of a
diagnosis scheme should be evaluated not only in terms of its
correctness but also its timeliness. To enhance the diagnostic effi-
ciency, it becomes necessary to consider the precedence order (in
time) between the fault propagation effects. Extensive studies have
already been carried out in our previous works to develop fault
identification techniques by incorporating both the eventual symp-
toms and also their occurrence order into a fuzzy inference system
(FIS). This fault diagnosis approach has been applied successfully
to a number of loop-free processes (Chang, Lin, & Chang, 2002) and
also to systems with feedback and/or feed forward control loops
(Chang & Chang, 2003; Chen & Chang, 2006, 2007).

Despite the fact that the diagnostic performance can be
significantly improved with the aforementioned strategy, the rep-
resentation, analysis and synthesis of inference systems are still
very cumbersome. There is a need to develop a unified theo-
retical framework to extract the intrinsic properties of dynamic
fault propagation behaviors in any given system. Our concern
here is primarily with the sequence of states visited after the
occurrence of fault origin(s) and the associated events causing
the state transitions. Such fault propagation behavior can be
described in terms of event sequences of the form e1 e2. . .en. In
the present work, a systematic procedure is developed to construct
automata and language models for the purpose of represent-
ing these sequences accurately and succinctly. Consequently, the
well-established discrete-event system theories can be adopted
to analyze the event strings in fault propagation processes and,
also, more compact inference rules can be produced accordingly.
A series of examples are provided in this paper to illustrate the
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proposed procedure and to demonstrate the effectiveness of the
fault diagnosis strategy.

2. Automata construction

In order to represent the fault propagation behaviors in a
given continuous chemical process with the proposed approach, an
automaton model must be first constructed. This model can be sim-
plified to form the so-called diagnoser, which is a special automaton
with only observable events. A formal diagnostic language can then
be generated accordingly for on-line implementation.

Following is a detailed description of the proposed automata
construction procedure.

2.1. SDG-based simulation procedure

For the aforementioned model-building purposes, it is necessary
to predict the system states visited in all possible fault propagation
scenarios and also the corresponding state-transition processes.
Although other qualitative models are equally acceptable, the SDG
is adopted in the present study as the basis for simulating the effects
of faults and failures. This selection is mainly due to the fact that
the needed implementation procedure is conceptually straightfor-
ward.

It should be noted that, in a SDG model, the fault origins can
usually be associated with the primal nodes, i.e., nodes with no
inputs. In addition, a set of five values, i.e., {−10, −1, 0, +1, +10}, may
be assigned to each node of the digraph to represent deviation from
the normal value of corresponding variable. The value 0 represents
the normal steady state. The negative values are used to denote
the lower-than-normal states and the positive values signify the
opposite. The magnitudes of non-zero deviations, i.e., 1 or 10, can
be interpreted qualitatively as “small” and “large” respectively. The
causal relation between two variables can be characterized with
a directed arc and the corresponding gain. Again each gain may
assume one of the five qualitative values, i.e., 0, ±1 and ±10. The
output value of any arc can be computed with the gain and its input
value according to the following equation:

vout =
{

g × vin if − 10 ≤ g × vin ≤ +10
+10 if g × vin > +10
−10 if g × vin < −10

(1)

where g, vin and vout denote respectively the gain, input and out-
put values. It is obvious that the deviation values of all variables
affected by one or more fault origin can always be computed with
this approach, but the time at which each deviation occurs is
indeterminable. Without the reference of time in the SDG-based
simulation results, it can nonetheless be safely assumed that the
change in an input variable should always occur earlier than those in
its outputs. This is the basic assumption adopted for building the
proposed automata.

2.2. System automata

A formal definition of a deterministic automaton A can be found
in Cassandras and Lafortune (1999). Specifically, it is a six-tuple

A = (S, E, �, f, s0, Sm) (2)

where, S is the set of system states; E is the finite set of events associ-
ated with the transitions in A; � : S → 2E is the active event function;
f : S × E → S is the transition function; s0 is the initial system state;
Sm ⊆ S is the set of marked states. In the present application, each
system state s ∈ S is either a collection of all node values at a particu-
lar instance after an initiating failure occurs or the initial state itself.
Every event e ∈ E represents a previously nonexistent fault effect.
The precedence order of these events is determined according to

Fig. 1. (A) A tree-shaped SDG model; (B) the automaton resulted from d( + 1) in (A).

the basic assumption mentioned above. The active event function
� (�) is used to specify the events which could change the system
state s, while the transition function f(s, e) is used for stipulating
the resulting state caused by e ∈ � (s). Finally, it should be noted
that the initial state s0 in this study is always associated with the
normal condition and the set Sm contains the final steady states
reached in all scenarios.

To facilitate illustration of the automaton construction steps,
let us first consider the most fundamental digraph configuration,
i.e., tree. More specifically, let us use the fictitious SDG model in
Fig. 1(A) as an example and also assume that a positive deviation in
the upstream variable d, i.e., d( + 1), is the only possible fault origin
in this case. Notice that, although the precedence order of any two
effects along the same branch path in this digraph can be uniquely
identified with the proposed qualitative simulation procedure, the
order of two distinct events located on separate branches should be
considered as indeterminable. The corresponding automaton can
thus be described with the state transition diagram presented in
Fig. 1(B). Every system state here is characterized with a collection
of the qualitative values of all variables in the digraph and these
states are listed in Table 1A. It can be observed from Fig. 1(B) that
state 0 is the initial state and 7 is the only marked state. Although
the active event function � (s) and the transition function f(s, e) can
be stipulated easily according to the aforementioned state transi-
tion diagram, the mappings defined by these two functions are still
listed in Tables 1B and 1C respectively for clarity. Three possible
event sequences between the initial and final system states can be
identified from this automaton model, i.e.,

1. d( + 1)x( + 1)y( + 1)z( − 1)u( + 1);
2. d( + 1)x( + 1)y( + 1)u( + 1)z( − 1);
3. d( + 1)x( + 1)u( + 1)y( + 1)z( − 1)

On the other hand, it should be noted that the same approach
can also be adopted to construct automata for other typical digraph
structures, e.g., feed forward loops (FFLs) and feedback loops (FBLs).

Table 1A
System states of the automaton in Fig. 1(B).

State d x y z u

0 0 0 0 0 0
1 +1 0 0 0 0
2 +1 +1 0 0 0
3 +1 +1 +1 0 0
4 +1 +1 +1 −1 0
5 +1 +1 0 0 +1
6 +1 +1 +1 0 +1
7 +1 +1 +1 −1 +1
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Table 1B
Active event function of the automaton in Fig. 1(B).

s (state) � (s) (active events)

0 d( + 1)
1 x( + 1)
2 u( + 1), y( + 1)
3 u( + 1), z( − 1)
4 u( + 1)
5 y( + 1)
6 z( − 1)
7 –

Table 1C
Transition function of the automaton in Fig. 1(B).

s (original state) e (active event) f(s,e) (resulting state)

0 d( + 1) 1
1 x( + 1) 2
2 y( + 1) 3
2 u( + 1) 5
3 z( − 1) 4
3 u( + 1) 6
4 u( + 1) 7
5 y( + 1) 6
6 z( − 1) 7

Simple examples are presented in the sequel to illustrate the cor-
responding model-building steps:

In this study, a feed forward loop (FFL) is considered to be a col-
lection of distinct paths in SDG with common starting and ending
nodes. The FFLs can be found in numerous chemical processes, e.g.,
the feed forward control systems, the ratio control systems and
various processing systems with parallel units, etc. To fix ideas, let
us consider the fictitious SDG in Fig. 2(A) as an example. The feed
forward loop in this case contains two paths, i.e. (1) x → y → z and
(2) x → u → v → z. Notice that the products of the edge gains along
these two paths can be found to be −1 and +1 respectively. Con-
sequently, this FFL is also referred to as negative feed forward loop
(NFFL). For illustration convenience, let us again assume that there
is only one possible fault origin d( + 1) and its effects propagate
along separate paths of NFFL independently. Since the SDG is essen-
tially a static model, it is not possible to tell which effect reaches the
ending node z first. The corresponding automaton can be described
with the state transition diagram given in Fig. 2(B). In this diagram,
the events z(1)( − 1) and z(2)( + 1) represent the changes in vari-
able z caused by disturbances propagating along paths (1) and (2)
respectively. These conflicting effects on the same variable are rec-
onciled in this work according to the generic rules listed in Table 2.
Notice that rules 4–6, 8, 9 and 13 yield more than one outcome. In
actual applications, it may be possible to assign a definite value to

Table 2
Reconciliation rules.

Rule Individual effects Net effect

1 +10, +10 +10
2 +10, +1 +10
3 +10, 0 +10
4 +10, −1 +10/+1
5 +10/−10 +10/+1/0/−1/−10
6 +1, +1 +10/+1
7 +1, 0 +1
8 +1, −1 +1/0/−1
9 +1, −10 −1/−10

10 0, 0 0
11 0, −1 −1
12 0, −10 −10
13 −1, −1 −1/−10
14 −1, −10 −10
15 −10, −10 −10

Table 3
System states in Fig. 2(B).

State d x y u v z w

0 0 0 0 0 0 0 0
1 +1 0 0 0 0 0 0
2 +1 +1 0 0 0 0 0
3 +1 +1 +1 0 0 0 0
4 +1 +1 +1 0 0 −1 0
5 +1 +1 +1 0 0 −1 −1
6 +1 +1 0 +1 0 0 0
7 +1 +1 +1 +1 0 0 0
8 +1 +1 +1 +1 0 −1 0
9 +1 +1 +1 +1 0 −1 −1

10 +1 +1 0 +1 +1 0 0
11 +1 +1 +1 +1 +1 0 0
12 +1 +1 +1 +1 +1 −1 0
13 +1 +1 +1 +1 +1 −1 −1
14 +1 +1 0 +1 +1 +1 0
15 +1 +1 +1 +1 +1 +1 0
16 +1 +1 +1 +1 +1 +1/0/−1 0
17 +1 +1 +1 +1 +1 +1/0/−1 −1
18 +1 +1 0 +1 +1 +1 +1
19 +1 +1 +1 +1 +1 +1 +1
20 +1 +1 +1 +1 +1 +1/0/−1 +1
21 +1 +1 +1 +1 +1 +1/0/−1 +1/0/−1

the net effect in each scenario with additional process knowledge
on a case-by-case basis. In the present example, let us determine
the automaton states by applying the reconciliation rules only (see
Table 3). Notice that the net outcomes of opposite effects (+1 and
−1) on z must be evaluated for states 16, 17, 20 and 21. According
to rule 8 in Table 2, there are three possibilities in each of these four
cases. Notice also that w may also assume three qualitative values in
state 21 and, thus, there may be 9 distinct combinations. However,
since z is the ending node of a NFFL and w is its output, the rec-
onciled states must be consistent with the edge gain (+1) between
them. In other words, the deviation values of z and w should be of
the same sign and there can be only 3 possibilities for state 21.

A feedback loop (FBL) in this work is essentially a path in digraph
on which the starting and ending nodes coincide. If the product of
all edge gains on the loop is negative, it is referred to as a negative
feedback loop (NFBL). It is in general very difficult to fully simulate
the transient behavior of a NFBL on the basis of SDG model alone.
To illustrate this point, let us consider the effects of disturbance
dx( + 1) on the example system in Fig. 3(A). It is obvious that the
incipient event sequence can be determined according to Eq. (1),
i.e., dx( + 1)x( + 1)y( + 1)z( + 1)u( + 1). However, since the net effect of
two simultaneous inputs, i.e., dx( + 1) and u( + 1), on x is uncertain
afterwards according to Table 2, the subsequent event sequence is
really indeterminable without further quantitative and/or qualita-
tive knowledge of the physical system in question. Although the
transient response of disturbance dx( + 1) cannot be properly pre-
dicted, it is sometimes possible to determine the final steady-state
values of loop variables a priori. In particular, if the NFBL in Fig. 3(A)
is a control loop, these final values can be assigned by following the
approach proposed by Ju, Chen, and Chang (2004). Table 4 is a com-
plete listing of final states of this standard control NFBL resulting
from various disturbances. Thus, one can express the fault propa-

Table 4
Steady-state values of loop variables in a standard control NFBL.

Fault origin x y z u

dx( + 1) 0 0 +1 +1
dy( + 1) −1 0 +1 +1
dz( + 1) 0 0 0 0
du( + 1) 0 0 −1 0
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Fig. 2. (A) A SDG model with negative feed forward loop; (B) the automaton resulted from d( + 1) in (A).
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(B)
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x
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0 1 2 3 4 5

7

dx(+1) x(+1) y(+1) z(+1) u(+1)

[x(0),y(0),z(+1),u(+1)]

6

Fig. 3. (A) A SDG model with negative feedback loop; (B) the automaton resulted
from dx( + 1) in (A).

gation behavior caused by dx( + 1) as the following event sequence

dx(+1)x(+1)y(+1)z(+1)u(+1) [x(0)y(0)z(+1)u(+1)]

Notice that the final states of all loop variables are lumped
into a single event in a square bracket and their precedence
order is left unspecified. This is due to the difficulties in detect-
ing the occurrence order of these symptoms in real time. Finally,
it should be noted that the final steady states of process NFBLs can
only be identified on a case-by-case basis and numerous exam-
ples have already been reported in the literature (Chen & Chang,
2007; Maurya, Rengaswamy, & Venkatasubramanian, 2004, 2006;
Oyeleye & Kramer, 1988).

The automaton resulting from a “large” disturbance can be
obtained by following the identical procedure described above if
fault propagation is immediate. In the case of the tree-shaped SDG
in Fig. 1(A), the corresponding automaton can be obtained simply
by changing the magnitude level of deviations in Fig. 1(B) from 1 to
10. However, if a finite time constant is needed to characterize the
transient response of an output variable to the disturbance in its
input and, also, its direction remains unchanged most of the time
during the time window of interest, then an auxiliary assumption
must be introduced to facilitate a more accurate description, i.e.,
the smaller deviation of a process variable must occur before reaching
a larger one of the same variable. Thus, the automaton in Fig. 1(B)
should be further revised to incorporate this requirement (see
Fig. 4). The same approach has been adopted to construct automata
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Fig. 4. The automaton resulted from d( + 10) in Fig. 1(A).

for fault origins with magnitude 10 in other diagraph configura-
tions. For the sake of brevity, these results are not included in the
present paper.

2.3. Diagnoser and diagnosability

In realistic applications, the fault origins (i.e., failures or upsets)
and some of the process variables cannot be monitored on-line.
Thus, the event set of an automaton model can be further divided
into two subsets, i.e., E = Eo ∪ Euo, where Eo and Euo denote the sets
of observable and unobservable events respectively. To check diag-
nosability of each fault origin under consideration and also facilitate
diagnostic inference with the available sensors, the system automa-
ton A should be converted to a diagnoser Adiag, which is in essence
a transformed automaton with Eo as its event set. Although a
construction procedure has already been developed by Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis (1996) for the
discrete event systems in general, the diagnosers for the present
applications are built with an intuitive but more convenient alter-
native approach. Specifically, if a state is reached immediately after
an unobservable event, then this state is merged with its predeces-
sor(s) in the original automaton model. For example, let us assume
that d( + 1) is the fault origin and y( + 1) is not observable in Fig. 1(B).
The corresponding diagnoser can be easily obtained by applying
this principle (see Fig. 5). The numerical node labels here are the
same as those in the original automaton, while the subscript of
each label is used to reflect whether or not the fault origin has
occurred when the corresponding state is reached. More specifi-
cally, the subscripts Y and N are used to represent “yes” and “no”
respectively.

If one or more NFFL is present in the digraph model, the observed
effects on the variables corresponding to the ending node(s) and its
outputs must be reconciled in the diagnoser according to Table 2.
Let us use Fig. 2(B) as an example to illustrate this point. By assum-

Fig. 5. A diagnoser obtained by assuming event y( + 1) in Fig. 1(B) is unobservable.

ing that only y, z and u are monitored on-line, this automaton can
be converted to the diagnoser shown in Fig. 6. It should be noted
that the net effects on z are treated as events in this automaton.

Finally, notice that the aforementioned diagnoser construction
practice is applicable even when multiple scenarios are possible.
As an example, let us consider the SDG model in Fig. 3(A) and
assume that there are two measured variables, i.e., y and z, and
four potential faults, i.e., dx( + 1), dy( + 1), dz( + 1) and du( + 1). The
automaton model of this system and the corresponding diagnoser
can be found in Fig. 7(A) and (B) respectively. Obviously, the issue
of diagnosability becomes important in this situation. Although
the formal necessary and sufficient conditions of system diag-
nosability has been derived and proven rigorously by Sampath,
Sengupta, Lafortune, Sinnamohideen, and Teneketzis (1995), the
identifiability of each fault origin in our studies can be determined
simply by inspecting the diagnoser. In particular, the diagnosabil-
ity of a given fault origin is established if it is the unique cause
of at least one diagnoser state. Otherwise, the corresponding fault
propagation scenario should be indistinguishable from other pos-
sibilities. On the basis of this criterion, one can clearly observe
from Fig. 7(B) that dz( + 1) and du( + 1) are both diagnosable while
the observable fault propagation behaviors of dx( + 1) and dy( + 1)
are indistinguishable. The feasibility of this simple checking pro-
cedure is attributed mainly to the fact that the automata used
in the present applications form a special subclass of those for
modeling the discrete event systems. More specifically, since the
continuous chemical processes are considered in this work, the fol-
lowing unique features can always be identified in corresponding
automata:

1. The initial automaton state is always associated with the normal
system condition.

2. Every initial state transition is triggered by failure event(s).
3. Recurrence of system state is not possible, i.e., the automaton is

free of any feedback loop. Notice that this feature is due to our
assumption that a final steady state is reachable in every possible
scenario.

3. Language generation

A language L is regarded in this work as a collection of finite-
length event sequences. These sequences are referred to as strings
or words. The set of all possible events is of course E in Eq. (2).
An additional set E * is also introduced here to include all possible
strings (including the empty string ε) constructed over E. Thus, it is
obvious that L ⊆ E∗.
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Fig. 6. A diagnoser obtained from the automaton in Fig. 2(B) with y, z and u as the measured variables.

Since fault diagnosis can only be performed according to the on-
line symptoms, i.e., the events in Eo, the aforementioned automaton
Adiag (not A) is thus used to generate a diagnostic language for the
purpose of enumerating all observable event sequences caused by
a given fault origin. Specifically,

L(Adiag) = {t ∈ E ∗ | f (s0, t) is defined by Adiag} (3)

The transition function f(s0, t) here can be evaluated recursively
according to the following rules:

f (s, ε) = s (4)

f (s, te) = f (f (s, t), e) (5)

where, t ∈ E * and e ∈ E. In addition, the marked language of automa-
ton Adiag can be defined as

Lm(Adiag) = {t ∈L(Adiag)| f (s0, t) ∈ Sm} (6)

In essence, an automaton-based language can be synthesized by
first identifying the longest strings and then obtaining all their pre-
fixes. Since the marked states in the present application are always
terminal, L(Adiag) can be produced by taking the prefix closure of

Fig. 7. (A) The automaton resulted from four different fault origins, i.e., dx( + 1), dy( + 1), dz( + 1) and du( + 1), in Fig. 3(A); (B) a diagnoser obtained from the automaton in (A)
with y and z as the measured variables.
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Lm(Adiag) (Cassandras & Lafortune, 1999), i.e.,

L(Adiag) = Lm(Adiag) (7)

where, Lm(Adiag) denotes the set of all prefixes of the strings in
Lm(Adiag). From Eq. (7), it can be shown that every diagnoser con-
sidered in this study must be nonblocking, i.e., any string t ∈L(Adiag)
can be always extended by another string t′ such that tt′ ∈Lm(Adiag).

Let us use the diagnoser in Fig. 5 as an example to illustrate the
aforementioned approach. The two languages marked and gener-
ated respectively by Adiag in this case should be

Lm(Adiag) = {x(+1)z(−1)u(+1), x(+1)u(+1)z(−1)} (8)

L(Adiag) = {ε, x(+1), x(+1)z(−1), x(+1)u(+1), x(+1)z(−1)u(+1),

x(+1)u(+1)z(−1)} (9)

As another example, the diagnoser in Fig. 6 yields the following
marked language:

Lm(Adiag) =
{

y(+1)z(−1)u(+1)z(+1/0/ − 1), y(+1)u(+1)z(−1)z(+1/0/ − 1),
u(+1)y(+1)z(−1)z(+1/0/ − 1), u(+1)z(+1)y(+1)z(+1/0/ − 1),
u(+1)y(+1)z(+1)z(+1/0/ − 1), y(+1)u(+1)z(+1)z(+1/0/ − 1)

}
(10)

The corresponding diagnostic language can be obtained by
applying Eq. (7). Finally, if the possibilities of multiple fault origins
are incorporated in a diagnoser, then there is a need to generate a
sublanguage specific to every fault origin, i.e.,

L(Adiag) =
⋃

i

L(AFi
diag) (11)

where, AFi
diag is an automaton obtained by removing all the abnormal

states in Adiag which are not caused by the ith fault origin Fi (i = 1, 2,
. . .). The marked sublanguages of the fault origins in Fig. 7(B) can
be easily produced with this method, i.e.,

Lm(Adx(+1)
diag ) = Lm(Ady(+1)

diag ) = {y(+1)z(+1)y(0)} (12)

Lm(Adz(+1)
diag ) = {z(+1)y(−1)[y(0), z(0)]} (13)

Lm(Adu(+1)
diag ) = {y(−1)z(−1)y(0)} (14)

The corresponding diagnostic sublanguages and language can
be constructed with Eqs. (7) and (11).

4. Fuzzy inference system

Every string in L(Adiag) is encoded with an IF-THEN rule in this
study. These rules can be incorporated in a fuzzy inference system

Fig. 8. (A) The process flow diagram of a single-tank storage system with feedback level-control loop (Example 1); (B) the SDG model of level-control system in Example 1.
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Fig. 9. The diagnoser constructed with measurement signals s5, s6, s7 and s8 in Example 1.

to evaluate the existence potential of the corresponding fault origin.
In particular, if at least one event sequence in the marked sublan-
guage Lm(AFi

diag) can be confirmed, then it is highly possible that
they are caused by the corresponding fault origin Fi. To assert such
a belief, the fuzzy conclusion “oi is OCR” is adopted in the inference
rule, where OCR is the linguistic value of the occurrence index oi

reflecting the highest confidence level in confirming the existence
of Fi. More specifically, this rule can be written as

IF to ∈Lm(AFi
diag) THEN oi = OCR (15)

where to denotes the observed event string. On the other hand, it is
certainly reasonable to disregard the possibility of a fault if none of

Fig. 10. Diagnosis results of two different scenarios in the level control system described in Example 1. (A) Occurrence index of m3( + 10) using simulation data obtained by
introducing the same event; (B) occurrence index of m3( + 10) using simulation data obtained by introducing the basic events in the second scenario, i.e., m3( + 1) and CV-01
sticks.
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Fig. 11. The process flow diagram of a CSTR reactor system with level and temperature control loops.

the corresponding event strings in L(AFi
diag) can be observed. Thus,

the diagnosis for this scenario should be “oi is NOC”, where NOC is
the linguistic value representing the lowest level of confidence. In
other words,

IF to /∈ L(AFi
diag) THEN oi = NOC (16)

The diagnostic conclusion for string to ∈L(AFi
diag)\ Lm(AFi

diag) is
UCT�, i.e., uncertain with confidence level �. Thus, this rule should
be written as

IF to ∈L(AFi
diag)\Lm(AFi

diag) THEN oi = UCT� (17)

In this study, the confidence level � in confirming the existence
of the root cause(s) is assumed to be proportional to the string
length. The highest possible confidence level is of course assigned
to the strings in Lm(AFi

diag).
The aforementioned IF-THEN rules can be implemented with a

two-layer fuzzy inference framework (Chen & Chang, 2006). A brief
description of this approach is presented in Appendix A for the sake
of completeness.

5. Examples

The examples provided here are used only to demonstrate the
feasibility of the automata-based approach for generating diagnos-
tic languages in typical chemical engineering systems. Additional
and more complex case studies can be found elsewhere (Chen &
Chang, 2006, 2007, 2008).

5.1. Example 1

Let us consider the level control system presented in Fig. 8(A)
and its digraph model in Fig. 8(B). All on-line signals in this system

(i.e., s5, s6, s7 and s8) are assumed to be available for fault diag-
nosis. For illustration convenience, only two possible scenarios are
studied here, i.e. (1) an uncontrollable increase in the flow rate of
stream 3 and (2) a moderate (controllable) increase in the flow rate
of stream 3 while control valve CV-01 sticks. The corresponding
diagnoser can be found in Fig. 9. Notice that this automaton is pre-
sented in two parts for clarity. States 0 and 0′ are used to represent
the combined states of the normal condition and the system con-
dition reached immediately after the occurrence of fault origin in
scenario 1 and scenario 2 respectively. These two states, i.e., 0 and
0′, should be lumped into a single one in the actual diagnoser.

Fig. 12. The SDG model of CSTR reactor system.



Author's personal copy

338 C.-T. Chang, C.Y. Chen / Computers and Chemical Engineering 35 (2011) 329–341

(A)

(B)
T(+1)Tc(+1) [CA(+1/0/-1),T(0),Tc(0)]1' 2'0' 3' 4'CA(-1)

4'

Tc(
+1
/0/-
1)

T(+1) Tc(-1) Tc(+1/0/-1) [CA(+1/0/-1),T(0),Tc(0)]1 20 3 5 6

4

T
c(+1)

CA(+1)
6

Fig. 13. The diagnoser constructed with on-line measurements of CA , T and Tc in Example 2.

In this example, it is assumed that the height of tank wall is
100 cm and the outlet flow rate is proportional to the square root
of liquid-level height. To carry out numerical simulation studies, it
is also assumed that the system is initially at the normal steady state
when the level height is 50 cm and the flow rates of both stream
1 and stream 2 are the same (707 cm3/s). The valve on stream 3 is
normally kept closed at any time. A PI controller was used in this
case and its parameters were chosen with the IMC design method,
i.e., Kc = 1.4145 and �I = 1436.2.

The first scenario was simulated by introducing an additional
flow rate of 900 cm3/s in stream 3 at 1000 s during simulation
run. The occurrence index of the event “m3(+10)” can be found in
Fig. 10(A). It can be observed that the diagnosis is clearly swift and
quite accurate. Specifically, the existence of fault origin is detected
almost immediately and fully confirmed at about 500 s after its
introduction. On the other hand, it should be noted that the sec-
ond fault propagation scenario was also simulated by fixing the
position of control valve CV-01 at 750 s and then introducing an
additional flow rate of 200 cm3/s in stream 3 at 1000 s. The occur-
rence index of the incorrectly assumed fault origin “m3(+10)” is
presented in Fig. 10(B). Notice that the nonzero occurrence index

in the period between 1000 and 2600sec can be attributed to the
fact that the observed event strings caused by the two fault origins
can be matched partially during the initial stage. More specifically,
the set of matched strings is

{s5(+1)s6(−1)s7(+1), s5(+1)s7(+1)s6(−1)}

As the on-line symptoms developed further, none of the longer
strings generated by the automaton in Fig. 9(B) can be used to char-
acterize the measurement data obtained after 2600 s and thus the
occurrence index drops to zero abruptly.

5.2. Example 2

The final example discussed in this paper is concerned with an
exothermic CSTR reactor with its temperature and level control
loops (see Fig. 11). It is assumed that there are three measurable
process variables, the temperature of cooling water (Tc), the tem-
perature and reactant concentration at the outlet of CSTR (T and CA).
For simplicity, it is further assumed that the variations in these vari-
ables are always accurately reflected in their measurements and,

Fig. 14. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin CA0( + 1). (A) Actual fault origin used in numerical simulation:
CA0( + 1); (B) actual fault origin used in numerical simulation: Tc0( + 1).
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Fig. 15. The diagnosis results obtained with a two-layer inference system concerning the assumed fault origin Tc0( + 1). (A) Actual fault origin used in numerical simulation:
CA0( + 1); (B) actual fault origin used in numerical simulation: Tc0( + 1).

therefore, it is not necessary to distinguish a measured variable
from its measurement signal in the digraph model. The resulting
SDG is given in Fig. 12. The fault origins considered in this exam-
ple are: (1) a moderate disturbance in the input concentration, i.e.,
CA0( + 1) and (2) a small increase in the upstream temperature of
cooling water, i.e., Tc0( + 1). The corresponding diagnoser can be
found in Fig. 13. Notice that, it is obviously not feasible to uniquely
identify a fault origin based only on the eventual symptoms, since
the final values of the on-line measurements in the above two sce-
narios are essentially the same, i.e., CA( − 1, 0, + 1), T(0) and Tc(0).
On the other hand, one can apply the two-layer diagnostic frame-
work based upon the marked sublanguages generated from Fig. 13,
i.e.,

Lm(ACA0(+1)
diag ) =

{
CA(+1)T(+1)Tc(−1)Tc(−1/0/ + 1)[CA(−1/0/ + 1), T(0), Tc(0)],
CA(+1)T(+1)Tc(+1)Tc(−1/0/ + 1)[CA(−1/0/ + 1), T(0), Tc(0)]

}
Lm(ATc0(+1)

diag ) = {Tc(+1)T(+1)CA(−1)[CA(−1/0/ + 1), T(0), Tc(0)]}

Numerical simulation studies have also been carried out to
confirm the usefulness of these diagnostic languages. The needed
mathematical model and its parameters can be found in Appendix
B. These two fault propagation scenarios were simulated by setting
the value of CA0 to be 0.97 lb-mol/ft3 at 3 h and Tc0 to be 540◦R at
3 h respectively in two separate runs. Satisfactory diagnosis results
can be obtained on the basis of these simulated measurement data
and these results are presented in Figs. 14 and 15.

6. Conclusions

In this study, a SDG-based reasoning procedure is proposed
to qualitatively predict all possible symptom patterns and also
their progression sequences. These intrinsic features of the symp-
tom evolution behaviors are captured with automata and language
models. The resulting IF-THEN rules can be incorporated in a two-
layer fuzzy inference system and this system can be installed

on-line to identify not only the locations of fault origins but also
their magnitude levels with relatively high resolution. The fea-
sibility and effectiveness of the proposed diagnostic strategy are
demonstrated in simulation studies.

Appendix A. Two-layer inference framework

First of all, it should be understood that not all the strings in sub-
language L(AFi

diag) show up in the actual fault propagation scenario
caused by Fi. To illustrate this point, let us use the diagnoser in Fig. 5
as an example. Since there is only one fault origin in this case, the
language in Eq. (8) should be the same as the marked sublanguage
for fault origin d( + 1), i.e., Lm(Ad(+1)

diag ). Notice that two alternative
strings are included in this language. It is obvious that only one of
the corresponding event sequences takes place in real time. The
task of fault diagnosis can thus be viewed as that of establishing
at least a partial match between the historical record of on-line
symptoms and one of the two candidate strings. A two-layer infer-
ence structure has already been developed for this purpose (Chen
& Chang, 2006) and a brief summary is presented below:

The first layer of the inference system is used for comparing
the current on-line symptoms with every diagnoser state and then
generating a measure of agreement between them. Let us again
consider Fig. 5. The inference rules given in Table A.1 can be used to
compute the agreement measures of all five diagnoser states. Notice
that the premises of these rules are constructed on the basis of the
qualitative deviation values of the observed variables at all pos-
sible states. These deviations are translated into linguistic values
according to an interpretation function ˚in, i.e.,

˚in(ık) =

⎧⎪⎪⎨⎪⎪⎩
LP if ık = +10
SP if ık = +1
ZE if ık = 0
SN if ık = −1
LN if ık = −10

(A1)
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Table A.1
Inference rules for computing agreement measures.

Rule no. IF THEN

i x z u stj

1 ZE ZE ZE A(j)
1

2 SP ZE ZE A(j)
2

3 SP SN ZE A(j)
3

4 SP ZE SP A(j)
4

5 SP SN SP A(j)
5

Table A.2
Inference rules for computing closeness measures.

Rule no. IF THEN

st1 st2 st3 st5 sq1

1 OCR NOC NOC NOC NOC
2 OCR OCR NOC NOC UCT1

3 OCR OCR OCR NOC UCT2

4 OCR NOC OCR NOC UCT1

5 OCR OCR OCR OCR OCR
6 OCR NOC OCR OCR UCT2

7 OCR OCR NOC OCR UCT2

8 OCR NOC NOC OCR UCT1

In the above equation, ık denotes the deviation value of mea-
surement k; LN, SN, ZE, SP and LP denote the linguistic values of
−10, −1, 0, +1 and +10 respectively. If the observed system state
is believed to be identical to a diagnoser state (say state j), then
the conclusion “stj is OCR” should be assigned to the inference rule.
Here, OCR is the linguistic value of the agreement measure of state
j, i.e., stj, reflecting the highest confidence level in confirming the
match. Otherwise, the conclusion in the first-layer inference rule
should be “stj is NOC”, where NOC is the linguistic value repre-
senting the lowest confidence. Thus, the linguistic values of the
agreement measures listed in Table A.1 can be determined with
the following equation:

A(j)
i

=
{

OCR if i = j
NOC if i /= j

(A2)

Notice that a total of 25 rules can be generated accordingly. The
maximum values of these agreement measures (i.e., stm

1 − stm
5 ) and

their respective occurrence times (i.e., �m
1 − �m

5 ) are updated every
time a new batch of measurements is taken. Clearly the occurrence
times of the maximum agreement measures must be consistent
with the precedence order given in one of the strings. For example,
if the first string in Eq. (8) is the event sequence resulting from
d( + 1), then the following inequality constraint must be imposed

�m
1 ≤ �m

2 ≤ �m
3 ≤ �m

5 (A3)

If, at any time, the inequality constraints associated with both
strings inLm(Ad(+1)

diag ) are violated, the outputs of the first-layer infer-
ence system for fault origin d( + 1), i.e., stm

1 − stm
5 , should all be reset

to zero.
The second-layer inference system is used for qualitatively com-

paring the time profiles of on-line measurements with each string
in L(AFi

diag), and then generating a measure of closeness between
the two. The inference rules for computing this measure can be
constructed on the basis of the outputs obtained from the first
layer. For example, the closeness measure sq1 of the first string in
Eq. (8) can be computed with the IF-THEN rules given in Table A.2.
Notice that rules 1, 2, 3 and 5 in this table are adopted on the basis
of Eqs. (15)–(17), where the confidence level � of linguistic value
UCT� is proportional to the string length. The remaining rules in
Table A.2 are used to account for the possibilities that one or more
intermediate state is not identifiable. Notice that the correspond-

ing rules for the second string in Eq. (8) can be synthesized with
the same approach. A complete listing is omitted here for the sake
of conciseness.

Finally, it should be noted that the occurrence index of a fault
origin should be determined by taking the largest value among all
closeness measures. In the present case, this value is

od(+1) = max{sq1, sq2} (A4)

Appendix B. Mathematical model used for simulating the
CSTR reactor system

dV

dt
= F0 − F (B1)

V = Arh (B2)

rA = k0e−(E/RT)CA (B3)

dCA

dt
= F0

V
(CA0 − CA) − rA (B4)

dT

dt
= F0

V
(T0 − T) + rA(−�H)

	Cp
− UA(T − Tc)

V	Cp
(B5)

dTc

dt
= Fc

Vj
(Tc0 − Tc) + UA(T − Tc)

Vj	jCj
(B6)

Fc = FCs − KT
c [(Tset − T) + 1

�T
I

∫ t

0

(Tset − T)dt] (B7)

F = Fs − KH
x [(hset − h) + 1

�H
I

∫ t

0

(hset − h)dt] (B8)

Note that the definitions of model parameters and their steady-
state values are given in Table B.1.

Table B.1
Model parameters used in Example 3.

Parameter Definition Steady-state value

h Height of liquid level in reactor 48 ft
V Reactor volume 4800 ft3

CA0 Reactant concentration in feed 0.47 lb-mol/ft3

T Reactor temperature 537◦R
F0 Feed flow rate 4000 ft3/h
T0 Feed temperature 530◦R
CA Reactant concentration in reactor 0.474 lb-mol/ft3

Tc Outlet coolant temperature 537◦R
Fc Coolant flow rate 4836 ft3/h
Vj Volume of jacket 385 ft3

k0 Frequency factor 7.08 × 1010/h
E Activation energy 30,000 Btu/lb-mol
R Universal gas constant 1.99 Btu/lb-mol ◦R
U Overall heat transfer coefficient 150 Btu/h ft2 ◦R
A Heat transfer area 25,000 ft2

Tc0 Inlet coolant temperature 530◦R
�H Heat of reaction −30,000 Btu/lb-mol
Cp Heat capacity (process side) 0.72 Btu/lbm ◦R
Cj Heat capacity (coolant side) 1 Btu/lbm ◦R
	 Density of process mixture 50 lbm/ft3

	j Density of coolant 62.3 lbm/ft3

Ar Cross-section area of reactor 100 ft2

Kc
H Proportional gain of level controller 10

Kc
T Proportional gain of temperature controller 80

�I
H Integral time of level controller 89.286 h

�I
T Integral time of temperature controller 0.6557 h

hset Set point of the level height in tank 48 ft
Tset Set point of the temperature in tank 537 ◦R
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