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ABSTRACT:Traditionally, design and control issues have been addressed separately at different stages in the life cycle of a chemical
plant. The process parameters are often selected in an ad hoc fashion during the design stage, and some of them later become the
nominal set-point conditions in actual plant operation. The uncertain online disturbances associated with each set of operating
conditions usually vary within a specific range centered at the nominal value. Because these arbitrarily chosen parameter values do
not always result in the highest level of operational flexibility, it is thus desirable to develop a systematic method to optimally stipulate
the nominal operating conditions of an existing process for maximum flexibility. The well-recognized flexibility index model is used
in this work to evaluate system resiliency based on fixed nominal conditions, and a direct search method (differential evolution) is
performed accordingly to identify the best candidates. Two examples are presented in this article to demonstrate the impacts of
nominal settings and the effectiveness of the proposed optimization approach.

1. INTRODUCTION

The term “flexibility” is generally regarded as the capability
of a system to function adequately under various sources of
uncertainties.1 It has also been recognized2�5 that these uncer-
tainties might be due to inaccuracies in the estimates of model
parameters for design calculations (such as heat-transfer coeffi-
cients, reaction rate constants, and other physical properties) or
external disturbances in process conditions during actual opera-
tions (such as the qualities and flow rates of feed streams). The
latter conditions often fluctuate online within some statistically
determinable ranges, whereas their nominal values can be stipulated
and adjusted offline within definite lower and upper bounds that are
physically tolerable by the system/equipment. Specific examples of
such scenarios can be found in later sections of this article.

Traditionally, design and control decisions are made in sequen-
tial stages over the life cycle of a chemical plant. In the design
phase, the “optimal” operating conditions and the corresponding
material and energy balance data are determined mainly on the
basis of economic considerations. In the subsequent step, the
control systems are configured to maintain the key process
conditions at the fixed nominal values. Because it is often
desirable to address the operability issues at the earliest pos-
sible stage, the systematic incorporation of flexibility analysis in
process synthesis and design has received considerable attention
in recent years.6�13 The so-called flexibility index (FI) was pro-
posed by Swaney and Grossmann12,13 to provide a quantitative
measure of the feasible region in the parameter space. More
specifically, the FI can be associated with the maximum allowable
deviations of the uncertain parameters from their nominal values,
under which feasible operation can be assured with proper manip-
ulation of the control variables. A series of subsequent studies focused
on improving and extending the use of this index in grassroots and
revamp designs.14�16 Although satisfactory results were reported,
none of the studies considered the important problem of setting the
most appropriate nominal conditions to maximize the FI.

The potential benefits of manipulating the nominal values of
uncertain parameters are basically two-fold. First, the operational

flexibility of a given chemical plant could be enhanced without
extra capital investments. In addition, the operating cost of a
system with higher flexibility is arguably lower because the
system can cope with more extreme conditions without shut-
down. Therefore, the main objective of this work is to develop an
effective optimization strategy for identifying the best nominal
conditions to maximize the flexibility index (FI).

According to Swaney and Grossmann,13 the FI is usually
determined in a minimization process on the basis of a mixed
integer nonlinear programming (MINLP)model with fixed nominal
parameter values. Consequently, a two-tier search algorithm is
needed to solve the correspondingmax�min optimization problem
for the research objective mentioned above. A direct search
method is adopted in the present study to perform maximization
runs at the upper level, and the original flexibility index model is
used at the lower level to carry out the well-established mini-
mization computations. The main reason for selecting a direct
search approach in this framework is the need to simplify the
problem formulation by avoiding the use of gradients. One of
the most popular multiagent direct search strategies is the so-
called genetic algorithm (GA) (e.g., seeHolland17 andGoldberg18).
There are also two other closely related optimization methods,
namely, differential evolution19,20 (DE) and particle swarm opti-
mization21�23 (PSO). DE is conceptually similar to GA in its use
of evolutionary operators to guide the search toward an opti-
mum, but it was specifically developed for real-valued search
spaces from the start. PSO was originally intended as a model for
the social behavior in a flock of birds, but the algorithm was later
simplified for solving optimization problems. Earlier studies
showed that DE fared best on a number of common benchmark
problems,24 and therefore, it was chosen as the direct search
optimizer for the present study.
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Based on the above discussions, it is clear that the unique
features of this work include
(a) a refined uncertainty concept that is characterized by the

uncertain ranges in termsof bothphysical and statistical limits,
(b) a modified problem definition in which some of the

nominal values of process parameters are allowed to be
manipulated, and

(c) a two-tier search strategy that is developed by integrating the
existingMINLP solver and a direct searchmethod (i.e., DE)
to solve the max�min optimization problem at hand.

The rest of the article is organized as follows: The problem
statement is presented in the next section, which includes
specifications of the basic assumptions, the given data, and the
expected results. In section 3, the detailed formulation of the
proposed dual-stage max�min mathematical programming
model is provided. A two-tier search algorithm was developed in
the present study for solving the proposedmathematical model, and
this strategy is described in section 4. Two examples are given in
section 5 to demonstrate the feasibility of the solution procedure
and also the impacts of nominal settings on systemflexibility. Finally,
the conclusions of this work are drawn in section 6.

2. PROBLEM STATEMENT

Let us assume that, for a given system, the conventional
flexibility index model13 is available. Let us further assume that
the set of uncertainty parameter nominal values, θN, can be
divided into two different types, that is

θN ¼ θNI
θNII

" #
ð1Þ

where the set θI
N can be adjusted offline with existing equipment

(e.g., feed quality and flow rate, removal ratio, etc.) whereas θII
N is

unalterable (e.g., heat-transfer coefficients, reaction rate con-
stants, physical properties, etc.).

In addition, the initial estimates of the nominal values of both
types of parameters are given. The search results of the proposed
strategy should include (1) the maximum value of FI for the
system considered and (2) the optimal nominal values of θI

N.

3. MODEL FRAMEWORK

As mentioned previously, Swaney and Grossmann12,13 devel-
oped the concept of the flexibility index, which is a single scalar
measure of the allowable variations in all uncertain parameters.
Although a thorough treatment of this issue has been provided by
Biegler et al.,25 the basic framework of the flexibility index model is
briefly outlined here for illustration clarity and completeness. First,
let us define the label sets for equality and inequality constraints

I ¼ fiji is the label of an equality constraintg ð2Þ

J ¼ fjjj is the label of an inequality constraintg ð3Þ
The general design model can be expressed as

hiðd, z, x, θÞ ¼ 0, i ∈ I ð4Þ

gjðd, z, x, θÞ e 0, j ∈ J ð5Þ
where hi is the ith equality constraint in the design model (e.g., the
mass balance equation for a processing unit), gj is the jth inequality
constraint in the design model (e.g., a capacity limit), d represents a

vector inwhich all design variables are stored, z denotes the vector of
adjustable control variables, x is the vector of state variables, and θ
denotes the vector of uncertain parameters. Notice that the
uncertain parameters can also be divided into two groups according
to eq 1. The parameter space, Γ(δ), can be expressed as

ΓðδÞ ¼ fθN � δΔθ� e θ e θN þ δΔθþg ð6Þ

where Δθ+ and Δθ� denote the vectors of expected deviations in
the positive and negative directions, respectively, and δ g 0 is a
scalar variable. The flexibility index was traditionally regarded as the
maximum value of δ that renders all points in Γ(δ) feasible.10,11

This flexibility index can be determined by solving the nonconvex
MINLP model

FI ¼ min
δ,μ, λ, s, y, x, z

δ ð7Þ
subject to the constraints in eqs 4 and 8�17

gjðd, z, x, θÞ þ sj ¼ 0, j ∈ J ð8Þ

∑
i ∈ I

μi
∂hi
∂z

þ ∑
j ∈ J

λj
∂gj
∂z

¼ 0 ð9Þ

∑
i ∈ I

μi
∂hi
∂x

þ ∑
j ∈ J

λj
∂gj
∂x

¼ 0 ð10Þ

∑
j ∈ J

λj ¼ 1 ð11Þ

λj � yj e 0, j ∈ J ð12Þ

sj �Q ð1� yjÞ e 0, j ∈ J ð13Þ

∑
j ∈ J

yj ¼ m þ 1 ð14Þ

θN � δΔθ� e θ e θN þ δΔθþ ð15Þ

yj ¼ f0, 1g, λj g 0, sj g 0, j ∈ J ð16Þ

δ g 0 ð17Þ
where sj is the slack variable for the jth inequality constraint, Q
denotes a large enough positive number to be used as the upper
bound of sj, μi denotes the Lagrangemultiplier of equality constraint
hi, λj is the Lagrange multiplier of inequality constraint gj, and yj
denotes the binary variable reflecting whether the corresponding
inequality constraint is active (i.e., gj = 0 if yj = 1, whereas gj < 0 if
yj = 0). Because the aforementioned model has been published
extensively in the literature,1,12,13 further details are omitted for the
sake of brevity.

Notice that the conventional flexibility index model considers
only fixed nominal parameter values. To find the optimal FI by
varying the nominal operating conditions in θI

N, a dual-level
optimization procedure is needed, that is

FImax ¼ max
θNI

min
δ,μ, λ, s, y, x, z

δ ð18Þ

Almost all constraints of this optimization problem should be the
same as those used in the original flexibility index model, namely,
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eqs 4, 8�14, 16, and 17, whereas eq 15 should be replaced by

θminI e θNI � δΔθ�I e θI e θNI þ δΔθþI e θmaxI

θNII � δΔθ�II e θII e θNII þ δΔθþII
ð19Þ

where θI
min and θI

max represent the lower and upper limits,
respectively, of realizable values of the type-I parameters. These
limits are necessary because θI

N should now be viewed as a vector
of decision variables and, therefore, the corresponding parameter
intervals, namely, θI

N� δΔθI
�e θIe θI

N + δΔθI
+, are no longer

bounded.Notice thatΔθI
� andΔθI

+ are used in the proposedmodel
to characterize the ranges of statistically uncertain parameters, but
θI
min and θI

max are needed for setting the lower and upper bounds
that are physically tolerable by the system/equipment.

An often-used approach to facilitate transformation of eq 18 into
a single-layer optimization framework is to convert the lower-level
problem into a set of equality and inequality constraints by invoking
the Karush�Kuhn�Tucker (KKT) conditions. However, it is clear
fromeqs 8�17 that integer variables are involved and, therefore, this
approach is not really applicable. Because the explicit functional
form of the FI in eq 7 (i.e., the lower-level optimum in eq 18) and its
gradients cannot be obtained readily, a direct search strategy,
namely, the differential evolution (DE) algorithm, is employed in
this work to handle the upper-levelmaximization problem. Finally, it
should be cautioned that any chosen search strategy inevitably
suffers the curse of dimensionality.24 In other words, as the dimen-
sion of θI

N increases, the computation cost for implementing the
proposed solution strategy might eventually become prohibitive.

4. TWO-TIER SEARCH STRATEGY

Asmentioned previously, the optimization problem in eq 18 is
tackled hierarchically on two levels. First, the MINLP formulated
in eqs 4, 7�14, 16, 17, and 19 is solved to minimize δ based on a
set of fixed nominal parameters in θN, and then, on the second
level, the maximum value of the flexibility index is determined by
adjusting the nominal operating conditions in θI

N according to
DE algorithm. A DE optimizer basically creates the agent positions
randomly on the basis of a reference position and then updates this
reference position to improve its fitness or to minimize a cost
function. A commonly used DE procedure was developed by Storn
et al.,19,20 and for the sake of completeness, a brief description is
presented in Appendix A. The proposed two-tier search strategy can
be concisely depicted with the flowchart in Figure 1. A brief
explanation of each step in this procedure is provided as follows:
(1) Assemble parameter values and model constraints. Obtain

all parameter values in the proposedmodel, including the

initial estimates of θI
N. Formulate all model constraints

based on eqs 4, 8�14, 16, 17, and 19.
(2) Construct computer codes for solving the generalized flex-

ibility index model. Build a GAMS code in a script file
according to eqs 4, 7�14, 16, 17, and 19. The model
parameters in θI

N are allowed to be varied through the
MATLAB�GAMS interface.26

(3) Generate new agents based on reference position. Use the
best candidate as a reference to generate new agents with
DE optimizer. The required computation process is
explained in the Appendix A.

(4) Compute flexibility indices according to the reference position
and also the positions of new agents. Execute the afore-
mentioned GAMS code repeatedly with the BARON
solver to determine a collection of flexibility indices using
the reference parameter values in θI

N and also those
specified in the NP new agents.

(5) Identify a candidate agent in the current population. The
agent yielding the highest FI value is picked from the
population in the present iteration.

(6) Update the best candidate in all iterations. If the FI value of
the current candidate is greater than that of the best
candidate in the previous iteration, the current candidate
is adopted to replace the old one. Otherwise, the current
candidate is discarded.

(7) Determine if the termination criterion is satisfied. The iteration
process is terminated when an assigned iteration number is
reached or an adequate level of fitness is achieved, that is

�ε e
θNI, k � θNI, k þ 1

θNI, k
e ε ð20Þ

where ε is a vector of error bounds and k denotes iteration
number.

(8) Report the search results. The search results are mainly the
optimal θI

N and the corresponding FI.

5. EXAMPLES

Two examples are presented in this section to demonstrate the
impacts of nominal settings on flexibility and the effectiveness of
the proposed optimization approach. A dryer control problem,
originally formulated by Lima et al.,2�4 is first analyzed to
illustrate the effectiveness of the proposed approach in realistic
applications. A water network design problem is then considered,
mainly because of the higher dimensionality of uncertainty
parameters. Both problems were solved on a PC equipped with
an Intel Core2 Quad CPU Q9400 and 4.00 GB RAM (3.25 GB
usable) 32-bit operating system platform.

Figure 1. Two-tier search strategy.
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The MINLP solver BARON in GAMS is utilized to carry out
the lower-level optimization runs specified in step 4 of the pro-
posed search procedure. The DE optimizer,19,20 which is coded

in script file deopt.m on the MATLAB platform, is used to
generate new agent positions (step 3). An existing MATLAB�
GAMS interface28 has been modified to facilitate data transfer
between these two levels. The values of type-I parameters are
passed from MATLAB to GAMS using data files matdata.gms
and matgdxdata.gms, and the GAMS output in matsol.gms
is passed back to the MATLAB environment. Finally, all steps
in the proposed search strategy are controlled and implemen-
ted according to Figure 1 with the main MATLAB routine
rundeopt.m.
5.1. Example 1: Dryer Control Problem. Consider the flow-

sheet presented in Lima et al.4 (see Figure 2). Basically, ambient
air, heated by natural gas combustion, is mixed with a flow of wet
particles. The mixture obtained is conveyed through a dryer/
scrubber/bag house unit with an induction fan. The process is
highly interactive and subject to internal flow and pressure
disturbances due to caking of partially dried material on the sides
of the dryer. The operation objective is to put as much material as
possible through the unit subject to constraints on measurements
characterizing temperature, pressure, and final particle moisture and
to minimize natural gas consumption at the same time.
This process can bemodeled by the following steady-state gain

equations and constraining sets2�4

x1 � xss1
x2 � xss2
x3 � xss3
x4 � xss4
x5 � xss5
x6 � xss6

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

9:00
0:06
0:70
�44:00
0
0:60

0
BBBBBBBBB@

1
CCCCCCCCCA

9:00 �5:10 �0:80 0:31
0:06 �0:05 0:03 0
0:70 �0:40 0 0
�44:00 �3:00 3:50 1:56
0 9:60 0 0
0:60 0 �0:03 �0:13

0
BBBBBBBBB@

1
CCCCCCCCCA

z1 � zss1
z2 � zss2
z3 � zss3
z4 � zss4

0
BBBB@

1
CCCCA þ

0:62 0
0 0
0 0
�1:10 1
�1:50 0
0:04 0

0
BBBBBBBBB@

1
CCCCCCCCCA

θ1 � θss1
θ2 � θss2

 !
ð21Þ

and

DOS ¼ x ∈ R 6j900 e x1 e 1000, � 4 e x2 e 0, � 40 e x3 e � 10, 100 e x4 e 170, 1300 e x5 e 1650, 0 e x6 e 1
n o

AIS ¼ fz ∈ R 4j0:3 e z1 e 0:95, 0:4 e z2 e 0:95, 0 e z3 e 1, 0:2 e z4 e 0:9g
EDS ¼ fθ ∈ R 2j30 e θ1 e 70, 0 e θ2 e 60g ð22Þ

where x denotes a vector of six controlled variables (CVs), z denotes
a vector of four manipulated variables (MVs), and θ is a vector of
two disturbance variables (DVs). The definitions of these variables
can be found in Table 1. The desired output set (DOS) is the
desired ranges of outputs to be achieved, and the available input set
(AIS) is the set of values that the process input variables can take.
Finally, notice that the expected disturbance set (EDS) represents
the expected steady-state values of the disturbances, and this set can
be used to reflect uncertainties in model parameters.
It is assumed in this study that the steady-state values of

controlled, manipulated, and disturbance variables are located at
the midpoints of their respective ranges, that is, xss = (950.0�2.0
�25.0 135.0 1475.0 0.5)T, zss = (0.625 0.675 0.5 0.55)T, and θss =
(50.0 30.0)T. From the expected disturbance set EDS, one can
see that Δθ1

� = Δθ1
+ = 20 and Δθ2

� = Δθ2
+ = 30. The flexibility

index model can therefore be constructed according to eqs 21
and 22 and these reference points (see Appendix B). The
corresponding FI of this system was found to be 0.944.
We next assume that all expected steady-state values in EDS

are adjustable, that is, they can be categorized as θI
N, and their

initial values are θ1
N = θ1

ss = 50 and θ2
N = θ2

ss = 30. Also, the
realizable values of both parameters are assumed to be between
30 and 70 for θ1

N and between 0 and 100 for θ2
N . The proposed

search strategy was utilized to locate the maximum FI. The
corresponding convergence process of the negative values of FI
can be found in Figure 3. Two alternative termination criteria are
employed in the search procedure according to iteration number
and relative error (defined in eq 20). For the current example, the
maximum iteration number is set to 50, and all relative error bounds
are set to 10�6. A population size of 20was found to be sufficient for
obtaining good results, and a computational time of roughly 1000 s
was needed to locate the optimal FI. The maximum FI identified in
the search process is 0.97219 (+2.99%) and the corresponding
values of θ1

N and θ2
N are 49.444 and 30.774, respectively. The DE

agents were randomly spread within the aforementioned search
range in the beginning (see Figure 4), and most of the agents
eventually converged around the optimal value.
5.2. Example 2: Water Network Problem. The basic water

network considered here consists of one primary sourceW1, one
secondary source W2, one sink S1, two water-using units U1 and

Table 1. Process variables Used for the Dryer Control
Problem in Example 1

process variable definition units

lower

bound

upper

bound

MV1 (z1) gas flow SP 0�1 ratio 0.3 0.95

MV2 (z2) feed screw amps SP 0�1 ratio 0.4 0.95

MV3 (z3) secondary damper VP 0�1 ratio 0 1

MV4 (z4) scrubber orifice VP 0�1 ratio 0.2 0.9

CV1 (x1) inlet temperature �C 900 1000

CV2 (x2) outlet temperature �C �4 0

CV3 (x3) combustion-chamber

pressure

kPag �40 �10

CV4 (x4) bag-house pressure kPag 100 170

CV5 (x5) main fan hp kW 1300 1650

CV6 (x6) predicted exit moisture % 0 1

DV1 (θ1) mixer amps A 30 70

DV2 (θ2) inlet moisture % 0 60
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U2, and a wastewater treatment unit T1 (see Figure 5). This
structure was studied previously by Riyanto andChang,15 and the
corresponding model parameters can be found in Table 2. Three
uncertain parameters are considered in the present example,
namely, the upper concentration limit of W2 (Cw2) and the mass
loads of U1 andU2 (Mu1 andMu2). To characterize uncertainties
more consistently, these parameters are normalized in the design
model, that is

Cw2 ¼ C̅w2θCw2 ð23Þ

Mu1 ¼ M̅u1θMu1 ð24Þ

Mu2 ¼ M̅u2θMu2 ð25Þ
where Cw2, Mu1, and Mu2 denote the reference parameter values
andθCw2

,θMu1
, andθMu2

are the corresponding uncertainmultipliers.
The uncertain multipliers are assumed to be located within the

Figure 3. Iteration of the FI value obtained in example 1.

Figure 4. Initial agent positions in example 1.

Figure 5. Basic structure of the water network.

Figure 2. Process flow diagram for the dryer control problem in example 1.

Table 2. Model ParametersUsed in theWaterNetwork Problem

parameter symbol units value

W1 maximum flow rate Fw1
U t/h 35000

W2 flow rate Fw2 t/h 30000

W1 concentration Cw1 ppm 0.100

W2 concentration Cw2 ppm 100000

U1 maximum inlet concentration CIu1
U ppm 1

U2 maximum inlet concentration CIu2
U ppm 80

T1 maximum inlet concentration CIt1
U ppm 185

S1 maximum concentration Cs1
U ppm 30

U1 maximum outlet concentration COu1
U ppm 101

U2 maximum outlet concentration COu2
U ppm 240

T1 maximum flow rate Ft1
U t/h 125

U1 mass load Mu1 kg/h 2

U1 maximum tolerable mass load Mu1
U kg/h 4

U2 mass load Mu2 kg/h 5

U2 maximum tolerable mass load Mu2
U kg/h 8

T1 removal ratio RRt1 0.9
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parameter space defined by eq 6, in which all nominal levels are 1,
that is

θNCw2
¼ θNMu1

¼ θNMu2
¼ 1 ð26Þ

and all corresponding positive and negative deviations equal 0.2,
that is

Δθ�Cw2
¼ ΔθþCw2

¼ Δθ�Mu1
¼ ΔθþMu1

¼ Δθ�Mu2
¼ ΔθþMu2

¼ 0:2 ð27Þ
By solving the conventional flexibility index model with fixed

nominal conditions (see Appendix C), the maximum FI can be
found to be 0.196. The only active constraint in this solution is
associatedwith themaximumconcentration at the inlet ofU2 (CIu2

U ).
In this example, the nominal mass loads of both water-using units

are assumed to be adjustable, and the corresponding multipliers (i.e.,
θMu1

and θMu2
) can thus be regarded as type-I parameters in θI.

Consequently, the only remaining multiplier, θCw2
, should be treated

as an uncertain parameter in θII. The DE optimizer was used to
search for the largest possible FI of the givenwater network structure.
Notice that, on the basis of eq 19, the agent positions should be
distributed within a region that is bounded by the lower and upper
limits of realizable type-I parameters. In the present case, this region is

0 e θMu1 e
MU

u1

M̅u1

 !

0 e θMu2 e
MU

u2

M̅u2

 ! ð28Þ

For the problem at hand, the maximum allowable number of
iteration steps in the search processwas set to 20, and every allowable
upper limit of relative error was 10�6. The initial population size was
5, and it took approximately 100 s to produce the optimal FI
(1.6148). The corresponding convergence process can be found in
Figure 6. According to the optimal solution, it can also be observed
that the nominal values of θMu1

N and θMu2

N should be adjusted to 0.328
and 1.042, respectively. In other words, the nominal mass load of U1
needs to be reduced to about 32.8%of the original level (or 0.656 kg/
h), whereas that ofU2 should be 4.2%higher (i.e., 5.21 kg/h). This is
clearly reasonable because the active constraint in the optimal
solution of the original flexibility index model is associated with
the maximum inlet concentration of U2.
Riyanto27 suggested that, to improve the operational flexibility

of a given water network, one can (1) raise the upper limit of
freshwater supply rate and/or (2) modify the network structure.
Although successful applications were reported, it should be
noted that both approaches inevitably incur extra operating and/
or capital costs. Additional cases are thus considered below to
demonstrate the advantages of the present strategy.
Notice first that FI can be improved to 0.995 by raising the

freshwater supply limit to 45 t/h. However, other than the extra
freshwater cost, this improvement is obviously less impressive when
compared with the FI value achieved by changing the nominal
values (1.6148). Next consider a revamped structure proposed by
Riyanto27 (see Figure 7). Notice that a new pipeline is added from
T1 to U2 to relax the active constraint corresponding to CIu2

U . By
solving the conventional flexibility index model with fixed nominal
conditions, it can be found that such a revamped design improves FI
to 3.829. In addition, the FI can be further raised to 4.226 by
increasing the freshwater supply limit to 45 t/h for this revamped
network. It can be observed that the corresponding active con-
straints are associated with the maximum inlet concentration of U2

(CIu2
U ) and themaximum throughput of T1 (Ft1

U). It should again be
noted that the aforementioned improvements can be realized only
with additional operating/capital costs. Finally, further enhance-
ment in operational flexibility can be achieved by changing the
nominal values of θMu1

N and θMu2

N to 0.89096 and 0.91773, respec-
tively. In particular, the FI can be raised to 4.452 without additional
investments. These adjustments are obviously quite effective for
relaxing the active constraints mentioned above.

6. CONCLUSIONS

The nominal parameter values arbitrarily selected in the design
stage might result in a low level of system resiliency in actual plant
operation. The possibility and benefits of adjusting nominal operat-
ing conditions to improve flexibility are clearly demonstrated in this
article. A two-tier search strategy is also developed to solve the
proposed max�min optimization problems. Two examples are
provided to illustrate these promising ideas. Based on the case
studies performed in this work, it can be observed that the impact of
adjusting the nominal values of uncertainty parameters can be quite
significant and should be considered as an additional means for
enhancing the operational flexibility of any given system.

’APPENDIXA:DIFFERENTIAL EVOLUTIONALGORITHM
AND TUNING PARAMETERS

The DE algorithm works by generating several solution can-
didates (called agents). These agents are spread throughout the
search-space according to simple mathematical formulas to
calculate the coordinate of agents from the aforementioned
population. If the new agent position has an improvement, then

Figure 6. Iteration of the FI value obtained in example 2.

Figure 7. Revamped water network structure.
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it is accepted and regarded as part of the population; otherwise,
the new position is simply discarded. The process is iterated
several times until a satisfactory solution is eventually found.

Let f: Rn f R be the fitness or minimized cost function.
Every candidate solution is regarded as an argument to the
function in the form of a vector of real numbers, and the given
candidate solution produces a real number as output that indicates
its fitness. The f gradient is not known. It is necessary to find a
solutionm for which f(m)e f(p) for all p in the search space, which
wouldmean thatm is the global minimum. The function h =�f can
be considered for maximization of such a procedure.

Let x∈Rn assign a candidate solution (agent) in the population.
The basic DE algorithm can then be described as follows:
b Initialize all agents x randomly in the search space.
b Until a termination criterion is met (e.g., number of iterations

performed, or adequate fitness reached), repeat the following:
O For each agent x in the population, do the following:

[ Pick NP agents from the population at random
such that all agents are different from each other
as well as from agent x.

[ Pick a random index R ∈ {1, ..., n}, where the
highest possible value n is the dimensionality of
the problem to be optimized.

[ Compute the agent’s potentially newpositiony∈ [y1,
..., yn] by iterating over each I ∈ {1, ..., n} as follows:

] Pick ri∼ U(0, 1) uniformly from the open
range (0, 1).

] If (i = R) or (ri < CR), let yi = ai +
F(bi � ci); otherwise, let yi = xi.

[ If f(y) < f(x), then replace the agent in the
population with the improved candidate solu-
tion, that is, set x = y in the population.

b Pick the agent from the population that has the lowest
fitness and report it as the best found candidate solution of
the corresponding iteration.

Notably, F ∈ [0, 2] is called the differential weight, and CR ∈
[0, 1] is called the crossover probability; both of these parameters
can be adjusted by the user along with the population size NP,
where NP denotes the number of agents in the population. For
the DE method, a standard choice of allegedly good behavioral
parameters is found in the works by Storn et al.17 and Liu and
Lampinen,28 which is a choice that also satisfies the theoretical
conditions derived by Zaharie.29 The DE parameters are not
difficult to choose to obtain good results.17 It is suggested that
one use NP = 300 to obtain good results, and F = 0.5 is usually a
good initial choice. If the population converges prematurely, then
F should be increased. Values of F smaller than 0.4, like those
greater than 1, are only occasionally effective. A good first choice
for CR is 0.1, but because a large CR often speeds convergence,
one should first try CR = 0.9 or CR = 1.0 to determine whether a
quick solution is possible. For fastest convergence, it is best to
pick the initial parameter range (Rn) such that it covers the
region of the suspected global optimum, although this choice
does not seem to be mandatory.

’APPENDIX B: CONVENTIONAL FLEXIBILITY INDEX
MODEL FOR DRYER CONTROL PROBLEM

FI ¼ min δ

s:t:

9:0ðz1 � zss1 Þ � 5:1ðz2 � zss2 Þ � 0:8ðz3 � zss3 Þ þ 0:31ðz4 � zss4 Þ þ 0:62ðθ1 � θss1 Þ þ xss1 � 1000 þ s1 ¼ 0

�½9:0ðz1 � zss1 Þ � 5:1ðz2 � zss2 Þ � 0:8ðz3 � zss3 Þ þ 0:31ðz4 � zss4 Þ þ 0:62ðθ1 � θss1 Þ þ xss1 � þ 900 þ s2 ¼ 0

�½9:0ðz1 � zss1 Þ � 5:1ðz2 � zss2 Þ � 0:8ðz3 � zss3 Þ þ 0:31ðz4 � zss4 Þ þ 0:62ðθ1 � θss1 Þ þ xss1 � þ 900 þ s2 ¼ 0

�½0:06ðz1 � zss1 Þ � 0:05ðz2 � zss2 Þ þ 0:03ðz3 � zss3 Þ þ xss2 � � 4 þ s4 ¼ 0

0:7ðz1 � zss1 Þ � 0:4ðz2 � zss2 Þ þ xss3 þ 10 þ s5 ¼ 0

�½0:7ðz1 � zss1 Þ � 0:4ðz2 � zss2 Þ þ xss3 � � 40 þ s6 ¼ 0

�44:0ðz1 � zss1 Þ � 3:0ðz2 � zss2 Þ þ 3:5ðz3 � zss3 Þ þ 1:56ðz4 � zss4 Þ � 1:1ðθ1 � θss1 Þðθ2 � θss2 Þ þ xss4 � 170 þ s7 ¼ 0

�½ � 44:0ðz1 � zss1 Þ � 3:0ðz2 � zss2 Þ þ 3:5ðz3 � zss3 Þ þ 1:56ðz4 � zss4 Þ � 1:1ðθ1 � θss1 Þðθ2 � θss2 Þ þ xss4 � þ 100 þ s8 ¼ 0

9:6ðz2 � zss2 Þ � 1:5ðθ1 � θss1 Þ þ xss5 � 1650 þ s9 ¼ 0

�½9:6ðz2 � zss2 Þ � 1:5ðθ1 � θss1 Þ þ xss5 � þ 1300 þ s10 ¼ 0

0:6ðz1 � zss1 Þ � 0:03ðz3 � zss3 Þ � 0:13ðz4 � zss4 Þ þ 0:04ðθ1 � θss1 Þ þ xss6 � 1 þ s11 ¼ 0

�½0:6ðz1 � zss1 Þ � 0:03ðz3 � zss3 Þ � 0:13ðz4 � zss4 Þ þ 0:04ðθ1 � θss1 Þ þ xss6 � þ s12 ¼ 0

z1 � 0:95 þ s13 ¼ 0, �z1 þ 0:30 þ s14 ¼ 0, z2 � 0:95 þ s15 ¼ 0, �z2 þ 0:40 þ s16 ¼ 0

z3 � 1 þ s17 ¼ 0, �z3 þ s18 ¼ 0, z4 � 0:90 þ s19 ¼ 0, �z4 þ 0:20 þ s20 ¼ 0

∑
20

j¼ 1
λj ¼ 1, ∑

20

j¼ 1
yj e 5

9:0λ1 � 9:0λ2 þ 0:06λ3 � 0:06λ4 þ 0:7λ5 � 0:7λ6 � 44:0λ7 þ 44:0λ8 þ 0:6λ11 � 0:6λ12 þ λ13 � λ14 ¼ 0

�5:1λ1 þ 5:1λ2 � 0:05λ3 þ 0:05λ4 � 0:4λ5 þ 0:4λ6 � 3:0λ7 þ 3:0λ8 þ 9:6λ9 � 9:6λ10 þ λ15 � λ16 ¼ 0

�0:8λ1 þ 0:8λ2 þ 0:03λ3 þ 0:03λ4 þ 3:5λ7 þ 3:5λ8 � 0:03λ11 þ 0:03λ12 þ λ17 � λ18 ¼ 0

0:31λ1 � 0:31λ2 þ 1:56λ7 � 1:56λ8 � 0:13λ11 þ 0:13λ12 þ λ19 � λ20 ¼ 0

λj � yj e 0, sj ¼ Uð1� yjÞ e 0, j ¼ 1, ... , 20

0 e 50� 20δ e θ1 e 50 þ 20δ e 70

0 e 30� 30δ e θ2 e 30 þ 30δ e 100

yj ¼ f0, 1g, sj g 0, j ¼ 1, ... , 20



10714 dx.doi.org/10.1021/ie201050w |Ind. Eng. Chem. Res. 2011, 50, 10707–10716

Industrial & Engineering Chemistry Research ARTICLE

’APPENDIX C: CONVENTIONAL FLEXIBILITY INDEX
MODEL FOR WATER NETWORK PROBLEM

FI ¼ min δ

s:t:

Fw1 � fw1, u1 ¼ 0 ðWBw1Þ, Fw2 � fw2, u2 ¼ 0 ðWBw2Þ, Fs1 � ft1, s1 ¼ 0 ðWBs1Þ
Fu1 � fw1, u1 ¼ 0 ðWBin

u1Þ, Fu2 � fw2, u2 � fu1, u2 � ft1, u2 ¼ 0 ðWBin
u2Þ, Ft1 � fu2, t1 ¼ 0 ðWBin

t1Þ
Fu1 � fu1, u2 ¼ 0 ðWBout

u1 Þ, Fu2 � fu2, t1 ¼ 0 ðWBout
u2 Þ, Ft1 � ft1, u2 � ft1, s1 ¼ 0 ðWBout

t1 Þ
Fu1CIu1 � fw1, u1Cw1 ¼ 0 ðCBu1Þ, Fu2CIu2 � fw2, u2C̅w2θCw2 � fu1, u2COu1 � ft1, u2COt1 ¼ 0 ðCBu2Þ
Ft1CIt1 � fu2, t1COu2 ¼ 0 ðCBt1Þ, Fs1Cs1 � ft1, s1COt1 ¼ 0 ðCBs1Þ
Fu1ðCIu1 � COu1Þ þ M̅u1θMu1 ¼ 0 ðPCu1Þ, Fu2ðCIu2 � COu2Þ þ M̅u2θMu2 ¼ 0 ðPCu2Þ, CIt1ð1� RRt1Þ � COt1 ¼ 0 ðPCt1Þ
Fw1 � FUw1 e 0, CIu1 � CIUu1 e 0, CIu2 � CIUu2 e 0, COu1 � COU

u1 e 0

COu2 � COU
u2 e 0, CIt1 � CIUt1 e 0, Ft1 � FUt1 e 0, Cs1 � CU

s1 e 0

λFUw1 � yFUw1 e 0, λCIUu1 � yCIUu1 e 0, λCIUu2 � yCIUu2 e 0, λCOU
u1
� yCOU

u1
e 0

λCOU
u2
� yCOU

u2
e 0, λCIUt1 � yCIUt1 e 0, λFUt1 � yFUt1 e 0, λCU

s1
� yCU

s1
e 0

λFUw1 þ λCIUu1 þ λCIUu2 þ λCOU
u1
þ λCOU

u2
þ λCIUt1 þ λFUt1 þ λCU

s1
¼ 1

yFUw1 þ yCIUu1 þ yCIUu2 þ yCOU
u1
þ yCOU

u2
þ yCIUt1 þ yFUt1 þ yCU

s1
e 3

sFUw1 � Uð1� yFUw1Þ e 0, sCIUu1 � Uð1� yCIUu1Þ e 0, sCIUu2 � Uð1� yCIUu2Þ e 0, sCOU
u1
� Uð1� yCOU

u1
Þ e 0

sCOU
u2
� Uð1� yCOU

u2
Þ e 0, sCIUt1 �Uð1� yCIUt1Þ e 0, sFUt1 � Uð1� yFUt1Þ e 0, sCU

s1
�Uð1� yCU

s1
Þ e 0

μWBw1 þ λFUw1 ¼ 0, �μWBw1 � μWBinu1
� Cw1μCBu1

¼ 0, �μWBw2
� μWBin

u2
� C̅w2θCw2μCBu2

¼ 0

μWBinu1
þ μWBoutu1

þ CIu1μCBu1
þ ðCIu1 � COu1ÞμPCu1

¼ 0

μWBinu2
þ μWBoutu2

þ CIu2μCBu2
þ ðCIu2 � COu2ÞμPCu2

¼ 0

μWBint1
þ μWBoutt1

þ CIt1μCBt1
þ λFUt1 ¼ 0, �μWBin

u2
� μWBoutu2

þ COu1μCBu2
¼ 0

�μWBin
u2
� μWBout

u2
þ COt1μCBu2

þ μft1, u2 ¼ 0, �μWBint1
� μWBout

u2
þ COu2μCBt1

¼ 0

�μWBout
t1
� μWBs1

þ COt1μCBs1
¼ 0, Fu1μCBu1

þ Fu1μPCu1
þ λCIUu1 ¼ 0

Fu2μCBu2
þ Fu2μPCu2

þ λCIUu2 ¼ 0, Ft1μCBt1
þ ð1� RRt1ÞμPCt1

þ yCIUt1 ¼ 0

�fu1, u2μCBu2
� Fu1μPCu1

þ yCOU
u1
¼ 0, �fu2, t1μCBt1

� Fu2μPCu2
þ yCOU

u2
¼ 0

�ft1, s1μCBs1
� μPCt1

¼ 0, μWBs1 þ Cs1μCBs1
¼ 0, Fs1μCBs1

þ λCU
s1
¼ 0

0 e 1� 0:2δ e θCw2 e 1 þ 0:2δ

0 e θNMu1
� 0:2δ e θMu1 e θNMu1

þ 0:2δ e
MU

u1

M̅u1

 !

0 e θNMu2
� 0:2δ e θMu2 e θNMu2

þ 0:2δ e
MU

u2

M̅u2

 !

yFUw1 , yCIUu1 , yCIUu2 , yCOU
u1
, yCOU

u2
, yCIUt1 , yFUt1 , yCU

s1
∈ f0, 1g

sFUw1 , sCIUu1 , sCIUu2 , sCOU
u1
, sCOU

u2
, sCIUt1 , sFUt1 , sCU

s1
g 0
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’NOMENCLATURE

Acronyms
AIS = available input set

CB = component balance
CV = controlled variable
DE = differential evolution
DOS = desired output set
DV = disturbance variable
EDS = expected disturbance set
FI = flexibility index
GA = genetic algorithm
KKT = Karush�Kuhn�Tucker
MINLP = mixed integer nonlinear

programming
MV = manipulated variable
PC = performance characterization
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PSO = particle swarm optimization
WB = water balance

Variables
C = overall concentration of the specific unit
CI = inlet concentration of the specific unit
CO = outlet concentration of the specific unit
d = vector of design variables
F = total flow rate
f = specific branch flow rate
FImax = optimal FI
gj = inequality constraints
hi = equality constraints
I = set of equality constraints
J = set of inequality constraints
k = iteration number
M = mass load of the specific water-using unit
M = mass load nominal value of the specific water-using unit
m = number of control variables
R = real number set
RR = removal ratio of water treatment unit
sj = slack variable for the jth inequality constraint
U = big real value
x = vector of state variables
yj = binary variables reflecting the active jth inequality constraint
z = vector of control variables

Greek Letters
Γ(δ) = parameter space of δ
δ = deviation due to uncertainties
Δθ+ = expected deviations of uncertainties, positive direction
Δθ� = expected deviations of uncertainties, negative direction
ΔθI

+ = expected deviations of θI, positive direction
ΔθI

� = expected deviations of θI, negative direction
ΔθII

+ = expected deviations of θII, positive direction
ΔθII

� = expected deviations of θII, negative direction
θN = set of uncertainty parameter nominal values
θI
N = set of alterable offline uncertainty parameter nominal values

θII
N = set of unalterable uncertainty parameter nominal values

θ = vector of uncertain parameters
θI = vector of alterable offline uncertainty parameters
θII = vector of unalterable uncertainty parameters
θI
max = physical system upper limit of θI

θI
min = physical system lower limit of θI

λj = Lagrange multiplier of the jth active constraint

Superscripts
+ = positive direction
� = negative direction
in = inlet
max = upper limits
min = lower limits
N = nominal values
out = outlet
ss = steady state value
U = upper bounds

Subscripts
i = label of equality constraint
I = label of alterable offline uncertainty parameters
II = label of unalterable uncertainty parameters
j = label of inequality constraint
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