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a  b  s  t  r  a  c  t

Semiconductor  manufacturing  is one  of the fastest-growing  industries  today.  As  the  recent  requirements
for  feature  sizes  and  wafer  sizes  change  rapidly,  it becomes  imperative  to  configure  increasingly  intricate
control  schemes  to maintain  product  quality  and  tool  utilization  rate.  For  this  purpose,  it is assumed  in
this study  that  a semiconductor  production  environment  can  be  viewed  as  multiple  queues  operated  in
parallel  and,  also,  the  EWMA  controllers  can  be  implemented  independently  to adjust  the  process  recipes
eywords:
WMA
ispatching policy
ueuing system
emiconductor manufacturing

of  different  products  in  each  queuing  system.  Based  on these  assumptions,  a  MINLP  model  is formulated
to  determine  the  optimal  dispatching  policies.  Systematic  numerical  simulation  procedure  is  also  devised
to confirm  the  validity  of  the  dispatching  model.  Since  accurate  estimates  of  the  model  parameters  may
not always  be  available,  the effects  of  model  mismatch  have  been  analyzed  and  the  proper  range  of
controller  tuning  parameter  is  recommended  to achieve  an  acceptable  level  of process  capability.
umerical simulation

. Introduction

The typical production environment in a semiconductor plant
esembles an automated assembly line in which many similar
roducts with different specifications are manufactured by a step-
y-step overall process. Each step is a complicated physiochemical
atch process that carried out by a number of similar tools working

n parallel. In this study, this environment is viewed as a system
ith multiple queues (Cassandras & Lafortune, 1999) operated in
arallel and more than one product may  be processed in each
ueue.

The run-by-run (RbR) control strategy has already been widely
mplemented in practice in the semiconductor manufacturing
ndustry for the purpose of ensuring product quality (Moyne, 2001),

hile the exponentially weighed-moving-average (EWMA) algo-
ithm is by far the most popular RbR control scheme (Patel &
enkins, 2000; Sachs, Hu, & Ingolfsson, 1995; Smith & Boning, 1997;
seng, Yeh, Tsung, & Chan, 2003). It is important to note that,
lthough the single-product RbR strategy can be readily applied
o a “thread,” i.e., a specific combination of product and tool (Firth,
ampbell, Toprac, & Edgar, 2006), the control performance may  be

ubstantially degraded in cases of seldom-utilized threads. Zheng,
in, Wong, Jang, and Hui (2006) showed that, even when the actual
oot cause of external disturbances is originated from the tool, a

∗ Corresponding author. Tel.: +886 6 2757575x62663; fax: +886 6 2344496.
E-mail address: ctchang@mail.ncku.edu.tw (C.-T. Chang).

098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.compchemeng.2012.12.009
© 2013 Elsevier Ltd. All rights reserved.

single tool-based EWMA  controller may  still be unstable if different
product-related uncertainties are present. Various approaches has
been proposed to estimate contributions to the biases due to tool
and product individually using historical measurements and then
recombine them to determine recipe adjustments for the future
runs (Firth et al., 2006; Pasadyn & Edgar, 2005). Based on the afore-
mentioned studies, it is thus assumed in the present work that (1)
the statistical parameters of biases due to tools and unprocessed
products can be estimated in advance and (2) a distinct EWMA  con-
troller can be implemented in each queuing system to adjust the
process recipe of every one of the products independently from run
to run.

“Dispatch” is a task often required in assigning either workers
or vehicles to satisfy customer needs. In particular, this task is per-
formed in response to the calls for taxicabs, couriers, emergency
services in everyday life, as well as the tools in semiconductor man-
ufacturing processes. The lot-priority index based dispatch rules are
often used in the latter case to rank various queues dynamically. To
apply these rules, it is necessary to first obtain various lot and sys-
tem attributes, such as: arrival time, due date, processing time(s),
queue length(s), work content, and setup time (Bhaskaran & Pinedo,
1992; Blackstone, Phillips, & Hogg, 1982; Kutanoglu & Sabuncuoglu,
1999; Raghu & Rajendran, 1993; Rajendran & Holthaus, 1999). The
commonly used FCFS (first come first serve) principle is in fact a

simple dispatch rule based on arrival time. On the other hand, more
sophisticated production planning and scheduling strategies have
also been developed. Dynamic dispatch rules have been investi-
gated by Pierce and Yurtsever (1999).  Dabbas and his coworkers

dx.doi.org/10.1016/j.compchemeng.2012.12.009
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:ctchang@mail.ncku.edu.tw
dx.doi.org/10.1016/j.compchemeng.2012.12.009
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roposed a modified dispatching approach to incorporate multiple
ispatching criteria into a single rule so that multiple performance
easures can be optimized (Dabbas, Chen, & Fowler, 2001; Dabbas

 Fowler, 2003). Finally, Choi and Reveliotis (2005) studied the allo-
ation problem concerning workstation processing and stepping
apacity in a capacitated reentrant line.

Traditionally only the throughput related measures, e.g., the
ustomer demands and the machine capacities, are considered
o stipulate the dispatching policy (in order to fully utilize the
rocessing capacity of the plant). To satisfy these criteria, it is often
ecessary to evenly distribute the production loads to all available
achines. On the other hand, as we have also pointed out, the qual-

ty of a specific type of products being produced in a particular tool
an be significantly affected by their processing frequency if the
orresponding thread is under RbR control. Alternative dispatching
olicies should therefore be considered for optimizing the overall
uality of each type of products in addition to operation efficiency.
owever, the constrained optimization problems of how to max-

mize product quality without creating backlog in production and
ow to maximize yield but maintain quality standards have never
een studied in details in the past. A mixed integer nonlinear pro-
ramming model is thus constructed in this work to solve these
roblems and to address the related issues. In this model the sta-
istical parameters of the biases attributable to different tools and
roducts are assumed to be available. For computation simplicity,
he quality statistics of finished products are predicted according
o a simplifying assumption, namely, wafers of the same type are
rocessed intermittently and regularly at a constant rate. The valid-

ty of resulting optimal dispatching policy is then confirmed with
 systematic numerical simulation procedure, which is also devel-
ped in this study.

The remainder of this paper is organized as follows. The detailed
ormulation of the proposed mathematical programming model
s first given in Section 2. Solutions of an example problem are
nalyzed in Section 3. Section 4 describes the development of

 numerical procedure devised to simulate the multi-product
ulti-tool plant under threaded RbR control and optimal dispatch.
alidations of the optimization results obtained in various case
tudies in Section 3 are then presented in Section 5. Since accurate
stimates of the model parameters may  not always be available, the
ffects of model mismatch are discussed in Section 6 and the proper
ange of EWMA  controller tuning parameter is also recommended
or achieving an acceptable process capability. Finally, conclusions
nd also some comments on future works will be given at the end
f it in Section 7.

. Mathematical programming model

.1. Optimal dispatch problem

Fig. 1 illustrates a production facility with P products and U tools
orking in parallel. The operation of each tool is viewed here as a
/M/1  queue and more than one product may  be processed in each

ueue. The dispatching problem at each stage in this environment
s concerned with the task of determining the percentages of each
ype of unprocessed products to be delivered to the available tools.
et us use f p

u to represent the probability of assigning product p to
ool u. Thus, the following constraints should be imposed

U
p p
u=1

fu = 1, 0 ≤ fu ≤ 1 (1)

here p = 1, 2, . . . , P.
Fig. 1. Parallel M/M/1  queuing systems with P products and U tools.

If �p represents the mean arrival rate of product p, the utilization
rate of tool u can be expressed as:

�u =
p∑

p=1

f p
u �p�p

u, 0 ≤ �u < 1 (2)

where u = 1, 2, . . . , U, and �p
u denotes the mean processing time

required for product p in tool u. Let us further assume that the mean
and variance of characteristic quality variable of the finished prod-
uct p produced in tool u (denoted as yp

u) can be estimated in advance
to be �̃[yp

u] and �̃2[yp
u] respectively. The overall mean and variance

for product p collected from all tools in the multi-product multi-
tool environment, i.e., �̃[yp] and �̃2[yp], can then be determined
according to the following formulas:

�̃[yp] =
U∑

u=1

f p
u �̃[yp

u] (3)

�̃2[yp] =
U∑

u=1

f p
u {( �̃[yp

u])
2 + �̃2[yp

u]} −
{

U∑
u=1

f p
u �̃[yp

u]

}2

(4)

The process capability index of product p can thus be expressed
accordingly as (Del Castillo, 2002)

Cpk[yp] =
(

USLp − �̃[yp]
3 �̃[yp]

,
�̃[yp] − LSLp

3 �̃[yp]

)
min

(5)

As mentioned previously, one of the primary objectives of dis-
patching operation is to maximize yield or efficiency. The latter
objective can be achieved by minimizing the overall utilization rate
of a manufacturing system under steady state condition. However,
we must also ensure that (1) the process capability index of each
product is kept above a lower bound (Cpk)p

min and (2) the utilization
rate of every tool is maintained below an upper limit �u,max. This
constrained optimization problem can be written as:

min
f p
u

U∑
u=1

�u (6)

which is subject to the constraints in (1) and, also, the following
inequality constraints

Cpk[yp] ≥ (Cpk)p
min 0 ≤ �u ≤ �u,max (7)

Alternatively, one can also try to maximize the overall quality per-
formance under the constraints given in (1) and (7).  The objective
of this alternative optimization problem can be written as

P∑
p
max

f p
u p=1

Cpk[y ] (8)

Notice that the above two alternative formulations of the optimal
dispatch problem are obviously incomplete. In the mathematical
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Fig. 2. Relation between thread count kp
u and queue count su .

rogramming models, it is still necessary to describe the effects
f dispatching parameters f p

u on the quality performance �̃[yp
u] and

˜ 2[yp
u] of each thread and also the overall quality performance �̃[yp]

nd �̃2[yp].

.2. Multi-product multi-tool production model

The specific combination of product p on tool u, i.e., thread (p, u),
s the basis of RbR control in the present applications. Fig. 2 illus-
rates the relation between the time sequence, thread sequence
nd the queue sequence in a multi-product parallel tool production
nvironment. Consider a tool u, product p′ arrives at time instants
, 7, 12, 14; corresponding to thread counts kp′

u = 1, 2, 3, 4; and
roduct p′′ arrives at time instants 4, 9, 19, 19; corresponding to
hread counts kp′′

u = 1, 2, 3, 4. If there are only these two  products in
his period, the production queue counts are: su = 1(kp′

u = 1),  su =
(kp′′

u = 1),  . . . , su = 8(kp′′
u = 4).

Let us assume that the input–output relation of the production
hread (p, u) can be written as follows:
p
u(kp

u) = ˛p
u + ˇp

uxp
u(kp

u) + �p
u(kp

u) (9)

here p = 1, 2, . . . , P is the product index; u = 1, 2, . . . , U is the
ool index; kp

u = 1, 2, . . . , Np
u is the run number (or thread count) of

roduct p on tool u; yp
u(kp

u) and xp
u(kp

u) denote the input and output
t run kp

u; ˛p
u and ˇp

u respectively represent the slope and intercept
f linear input–output model; �p

u(kp
u) is the corresponding process

oise. Let us further assume that the process noise can be classified
nto a product related noise and a tool related noise, i.e.
p
u(kp

u) = �p(kp
u) + �u(˚(kp

u)) (10)

he product related noise �p(kp
u) can be expressed as

p(kp
u) = �p + εp(kp

u) (11)

here �p is a constant bias associated with product p and
p(kp

u) ∈ N(0,  �2[εp]) is a random noise. Since several different types
f products may  be produced with the same tool, an assignment
unction ˚(kp

u) is introduced in this work to characterize the one-
o-one mapping relation from thread count kp

u to queue count su:

u = ˚(kp
u) (12)

here su = 1, 2, 3, . . . , NRu and NRu =
∑P

p=1Np
u . This assignment

unction should satisfy the following constraint:

(kp′
u ) < ˚(kp′′

u ) iff Ap′
u (kp′

u ) < Ap′′
u (kp′′

u ) and p′ /= p′′ (13)

here Ap′
u (kp′

u ) denotes the arrival time of run kp′
u of product p′ on

ool u, while Ap′′
u (kp′′

u ) denotes the arrival time of run kp′′
u of product

′′ on tool u.
In this work, it is assumed that the tool noise is an IMA(1,1)
rocess (Box, Jenkins, & Reinsel, 1994) in terms of the queue count
u, which can be expressed as

u (su) = �u (su − 1) − 	uεu (su − 1) + �u + εu (su) (14)
Fig. 3. Threaded EWMA  RbR control of product p with random product noise on a
static linear tool u with IMA(1,1) noise.

where 	u is the time correlation of noise due to tool u; and
εu(su) ∈ N(0,  �2[εu]) is a zero mean random noise and �u is a con-
stant offset due to tool u

2.3. Threaded RbR control strategy

On the basis of the above formulation, the output prediction
model can be expressed as (Ma,  Chang, Jang, & Wong, 2009):

ỹp
u(kp

u) = ap
u + bp

uxp
u(kp

u) (15)

where ỹp
u(kp

u) is the predicted output of run kp
u for product p on

tool u; ap
u and bp

u are model estimates of the parameters ˛p
u and ˇp

u

respectively. The offset term for the thread can be estimated with
the EWMA  algorithm, i.e.

�̃p
u(kp

u) = 
p
u[yp

u(kp
u) − ap

u − bp
uxp

u(kp
u)] + (1 − 
p

u)�̃p
u(kp

u − 1) (16)

in which 
p
u is the adjustable filter parameter of the EWMA  con-

troller for thread (p, u). The process input can then be computed
according to the following equation:

xp
u(kp

u + 1) = Tp − �̃p
u(kp

u) − ap
u

bp
u

(17)

where Tp is the target response of product p. To facilitate clear
illustration of the control scheme, the closed-loop block diagram
of thread (p, u) is given Fig. 3.

2.4. Approximate thread disturbance and thread performance
under RbR control

The input–output model of thread (p, u) can be written in a
different form as:

yp
u(kp

u) = ˛p
u + ˇp

uxp
u(kp

u) + �p + εp(kp
u) + �u + �u(su = ˚(kp

u))

≡ �˛p
u + ˇp

uxp
u(kp

u) + εp(kp
u) + ��p

u(kp
u)

(18)

where �˛p
u = ˛p

u + �p + �u and ��p
u(kp

u) = �u(su = ˚(kp
u)). It should be

noted that even though �u(su) is an IMA(1,1) series in terms of
the tool index su, the noise sequence ��p

u(kp
u) is in general not an

IMA(1,1) series in terms of thread index kp
u. However, according

to Box, Jenkins, and Reinsel (1994),  if an IMA(1,1) process with
time correlation parameter 	1 and variance �2

1 is sampled at a con-
stant sampling interval h, the resulting observations should form an
IMA(1,1) process with time correlation parameter 	h and variance

�2

h
:

h(1 − 	1)2

	1
= (1 − 	h)2

	h
(19)
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2
h = 	1

	h
�2

1 (20)

ince the mean arrival rate of product p at tool u can be expressed
s f p

u �p, the following formula is used in this study to compute the
verage number of arrivals between two consecutive arrivals of
roduct p on tool u:

1

hp
u

= f p
u �p∑P

p=1f p
u �p

(21)

hus the noise series ��p
u(kp

u) can be approximated by:
p
u(kp

u) ≈ ��p
u(kp

u − 1) − 	p
uεp

u(kp
u − 1) + εp

u(kp
u) (22)

otice that, in this equation, the time correlation parameter of
hread (p, u), i.e., 	p

u , can be determined according to Eq. (19):

hp
u(1 − 	u)2

	u
= (1 − 	p

u)
2

	p
u

(23)

lso, εp
u(kp

u) ∈ N(0,  �2[εp
u]) is a zero-mean normally distributed ran-

om noise. The variance of this noise can be computed on the basis
f Eq. (20), i.e.

2[εp
u] = 	u

	p
u

�2[εu] (24)

ccording to Del Castillo (2002), if a linear static process with an
MA(1,1) disturbance with time correlation parameter 	 and vari-
nce �2 is under the EWMA  control, the error output of the finished
roduct will have an expected mean of zero and an expected vari-
nce of

[(�y)2] = 1 + (	)2 − 2	(1 − 
�)

1 − (1 − 
�)2
�2 (25)

n the above equation, the ratio � = ˇ/b is used to represent the mis-
atch between model gain and process gain. For the thread (p, u),

t will experience an IMA(1,1) disturbance with time correlation
arameter 	p

u , and a random noise with zero mean and variance
2[εp]. Hence the products of thread (p, u) under EWMA-RbR con-

rol should have an expected mean of zero, i.e., �̃[yp
u] = 0, and an

xpected variance of:

˜ 2[yp
u] = 1 + (	p

u)
2 − 2	p

u(1 − 
p
u�p

u)

1 − (1 − 
p
u�p

u)
2

�2[εp
u] + 2

(2 − 
p
u�p

u)
�2[εp]

(26)

ote that this formula can be found in Del Castillo (2002) and, for
he sake of completeness, a derivation is provided in the Supple-
entary Material. If �p

u = 1, this formula can be written as

˜ 2[yp
u] = 1 + (	p

u)
2 − 2	p

u(1 − 
p
u) + 2
p

ur

1 − (1 − 
p
u)

2
�2[εp

u] (27)

here r = (�2[εp])/(�2[εp]). The expected mean and variance, as
ell as the estimated process capability of the product p can there-

ore be written as:

˜ [yp] =
U∑

u=1

f p
u �̃[yp

u] = 0 (28)

˜ 2[yp] =
U∑

u=1

f p
u �̃2[yp

u] (29)

p p p p

˜

pk[yp] = USL

3 �̃[yp]
= − LSL

3 �̃[yp]
= USL − LSL

6 �̃[yp]
(30)

otice that Eq. (30) is valid only under the condition that USLp =
LSLp.
al Engineering 52 (2013) 112– 121 115

2.5. Mathematical formulation of MINLP model

In principle, Eqs. (1), (7), (21), (23), (24), (27), (29) and (30) can
be used as the constraints of a nonlinear programming (NLP) prob-
lem to determine the optimal dispatch strategy according to Eq. (6)
or (8).  However, these two  NLP models are unsolvable in practice
since hp

u → ∞ as f p
u → 0. To facilitate solution, let us introduce a

set of binary variables (Ip
u ∈ {0, 1}) along with the following logic

constraints:

f p
u ≤ Ip

u ≤ f p
u L (31)

(1 − Ip
u)L ≤ hp

u ≤ L (32)(
P∑

p=1

f p
u �p

)
Ip
u = f p

u �php
u (33)

where L is a large enough positive constant. The implications of
these constraints can be summarized as follows

Ip
u = 0 ⇒ f p

u = 0, hp
u = L (34)

Ip
u = 1 ⇒ 0 < f p

u < 1, 0 < hp
u < L (35)

Thus, two  corresponding MINLP models can be constructed by
incorporating Eqs. (31)–(33) into the aforementioned NLP models.
The input parameters required in solving these MINLPs are: the
characteristic parameters of tool disturbances, i.e., 	u and �2[εu],
the characteristic parameters of disturbance attributed to the prod-
ucts �2[εp], the arrival rates of unprocessed products �p, the upper
and lower quality specifications of the finished products, i.e., USLp

and LSLp, the process capability requirements (Cpk)p
min, the process

times �p
u , and the upper limits of utilization rates �u,max. The pri-

mary decision variables in these model are the dispatch fractions
f p
u , while the auxiliary binary parameters Ip

u of each thread should
be selected as well. The needed optimization computation can be
readily implemented with the commercial software GAMS.

3. Optimization results

To demonstrate the feasibility of the proposed mathematical
programming approach for identifying the optimal dispatching pol-
icy, let us consider a system with four products (denoted as a, b,
c and d) and seven parallel tools. Model parameters for different
tools and products can be found in Table 1. It is also assumed that
�u,max = 1, (Cpk)p

min = 1, USL = 3.2, LSL = −3.2, 	u = 0.8, 
p
u = 0.5,

�[εu] = 0, and �p
u = 1. The dispatch policies can be generated by

solving the proposed MINLP model. Three simple cases are consid-
ered in the sequel.

3.1. Case 1: uniform distribution of production loads

If there is no preference for any thread, the intuitive dispatch
policy of distributing the production loads uniformly among all
available tools can be adopted. Thus, the dispatching fractions of
all threads should be identical, i.e., f p

u = 1/7. The resulting process
capacities should be:

C̃pk[ya] = 1.775, C̃pk[yb] = 1.497, C̃pk[yc] = 1.326,

C̃pk[yc] = 1.767 ∴
∑

p

C̃pk[yb] = 6.365

The corresponding utilization rates are:
�1 = 0.765, �2 = 0.766, �3 = 0.764, �4 = 0.767,

�5 = 0.763, �6 = 0.763, �7 = 0.768 ∴
∑

u

�u = 5.357
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Table  1
Tool, product and thread parameters of case studies.

�p
u Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 �p �p �2[εp]

Product a 50.0 50.5 49.9 49.6 50.2 49.5 50.3 0.012 −0.32 0.108
Product b 40.0 40.7 40.2 39.5 39.8 39.7 40.1 0.024 −0.60 0.324
Product c 40.0 39.2 39.4 40.9 40.5 40.4 39.6 0.048 −0.32 0.288
Product d 40.0 40.5 40.3 39.7 39.2 39.6 40.7 0.048 0.16 0.108

�2[εu] 0.324 0.288 0.288 0.108 0.288 0.108 0.108
p 2.5

0.6
2.4

N
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t
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˛u = ˛u 1.0 2.0 1.5 0.5 

ˇp
u = ˇu 0.8 1.0 2.0 1.5 

ap
u = au 1.1 1.9 1.6 0.6 

otice that the process capabilities of product b and c are relatively
ower than those of a and d. This is because the variations in their
isturbances, i.e., �2[εp], are higher. Notice also that the utiliza-
ion rates of all tools are roughly the same and close to 76.5%. This
orresponds to a situation in which the production facility is nei-
her flooded with customer demand nor does it have a lot of idle
apacity.

.2. Case 2: minimization of total utilization rate

In this case, the proposed MINLP model is solved to minimize
he total utilization rate, i.e., Eq. (6).  This and all other optimization
roblems were solved in this study with solver DICOPT in GAMS
n a PC, which is equipped with an Intel® CoreTM i5 Quad CPU 760

 2.8 GHz and 4.00 GB RAM (3.49 GB usable) 32-bit WIN7 operat-
ng system platform. To produce a credible optimum, each problem

as solved repeatedly for 2000 runs with randomly generated ini-
ial guesses over the given intervals. Only the best solution was
ept and reported. The average solution time of a single run is
pproximately 1 s.

Minimization of total utilization rate will determine how much
xtra capacity the plant has, and whether additional orders can be
elivered. The corresponding optimization results are presented in
able 2. Instead of assigning each product to every tool, each prod-
ct is mainly dispatched to one to three tools in the present case.
ince the utilization rate of tool u is given by �u =

∑p
p=1f p

u �p�p
u , let

s examine the values of �p�p
u in Table 3.

Notice that the lowest �p�p
u associated with each product are:

a�a
6 = 0.5891 for product a, �b�b

4 = 0.9405 for product b, �c�c
2 =

.8667 for product c, and �d�d
5 = 1.8667 for product d. It can thus

e expected that tools 6, 4, 2 and 5 will be selected first to process
roducts a, b, c and d respectively. The most efficient tool for prod-
ct b is tool 4. Moreover, since �b�b

4 = 0.9405 ≤ 1, it is possible for
s to dedicate product b to tool 4. The fastest tool for producing
roduct c is tool 2. However, tool 2 is not sufficient to take up all
roductions of product c, because �c�c

2 = 1.8667. Hence about half
f product c is allocated to the second most efficient tool, i.e. tool
, for which �c�c

3 = 1.8672. The most efficient tool for product d is
ool 5. Since �d�d

5 = 1.8667 ≥ 1, another tool for product d must be
ound. The second most efficient tool for product d is tool 6, which
s also the most efficient tool for product a. Thus products a and

 must share tool 6. Moreover, since tool 6 does not have enough
apacity for product a and part of product d, alternate tools must be
ound. Tool 1, the third best tool, is thus used for processing product
, while tools 3 and 4 are for product a. It can be seen in the solu-
ion that general dispatch philosophy is to rank the tools in terms
f efficiency for each product and try to pack the product to the best
anked tools for this product. Compared with the results obtained

n Case 1, the total utilization rate in the present case is slightly
mproved to 75.1%. However, it can also be observed that tools 2–6
re almost fully operational while the utilization of tool 1 is only
8.5% and tool 7 is completely idle. Finally, notice that the overall
 1.8 3.0
 2.5 1.3
 1.6 3.1

process capability does not change much from that achieved with
uniform load distribution.

3.3. Case 3: maximization of overall process capability

Another alternative dispatch policy can be stipulated by max-
imizing the overall process capabilities of all products. The
optimization results are shown in Table 4. It was  found that the
overall process capability can be substantially increased to 6.779
(compared to 6.365 in Case 1 and 6.352 in Case 2) without sacri-
ficing the total utilization, i.e., 76.3% (compared to 76.5% in Case 1
and 75.1% in Case 2). Table 5 lists the sum of variances of the tool
disturbances and the product disturbances. It is obvious that tools
4, 6, 7 are better tools for quality control and product a and d are
the products with least product variations. Consequently, product
d was  assigned to tool 6 and 7, while product a was  assigned to tool
4. The remaining capacity of tool 4 was  taken up by part of product
b. The other portion of product b was assigned to tool 3, which is
one of the next best available tool. Product c was assigned to tools
2 and 5, which are the best tools available other than the occupied
tools mentioned above, i.e., tool 4, 6, and 7. So it can be expected
that, with the present dispatching model, the tool with the lowest
value of �2[εu] + �2[εp] should always be selected first to process
product p unless �u → 1. As a result, almost all tools are dedicated
(except tool 4) to a single product. Notice that, in a dedicated tool,
i.e., hp

u = 1, the RbR control will be more effective because of the
higher action frequencies.

4. Numerical simulation procedure

Let us assume in the aforementioned production environment
that the random inter-arrival time of product p at tool u (denoted
as Yp

u ) and the corresponding random service time (denoted as Zp
u )

are both exponentially distributed, that is

Pr{Yp
u ≤ t} = 1 − e−f p

u �pt (36)

Pr{Zp
u ≤ t} = 1 − e−t/�p

u (37)

To simulate the aforementioned queuing system, it is conve-
nient to first generate random variates from a uniform distribution
between 0 and 1, and then make proper transformations to pro-
duce the exponentially distributed inter-arrival times and service
times. Notice that Pr{X(kp

u) ≤ x} = x if X(kp
u) ∈ U[0, 1] is a uniformly

distributed random number between 0 and 1. Thus, we could obtain
Yp

u and Zp
u according to the uniformly distributed random numbers

X ′(kp
u) and X ′′(kp

u) and let

′ p
X ′(kp
u) = 1 − e−f p

u �pYp
u (kp

u) ⇒ Yp
u (kp

u) = − ln[1 − X (ku)]

f p
u �p

(38)

X ′′(kp
u) = 1 − e−Zp

u (kp
u)/�p

u ⇒ Zp
u (kp

u) = −�p
u ln[1 − X ′′(kp

u)] (39)
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Table 2

Optimization results for Case 2.
∑

u

�u = 5.285,
∑

p

C̃pk[yp] = 6.352.

f p
u Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 C̃pk[yp]

Product a 0.210 0.098 0.692 1.944
Product b 0.999 0.001 1.439
Product c 0.535 0.465 1.280
Product d 0.150 0.001 0.001 0.535 0.313 1.690

�u 0.285 0.999 0.999 0.999 0.999 0.999 0

Table 3
Products of mean arrival rate and mean processing time in Case 2.

�p�p
u Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7

Product a 0.5950 0.6010 0.5938 0.5902 0.5974 0.5891 0.5986
Product b 0.9524 0.9691 0.9572 0.9405 0.9476 0.9453 0.9548
Product c 1.9048 1.8667 1.8762 1.9477 1.9286 1.9238 1.8858
Product d 1.9048 1.9286 1.9191 1.8905 1.8667 1.8858 1.9381

Table 4

Optimization results for Case 3.
∑

u

�u = 5.342,
∑

p

C̃pk[yp] = 6.779.

f p
u Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 C̃pk[yp]

Product a 1 2.086
Product b 0.001 0.564 0.435 1.315
Product c 0.001 0.535 0.417 0.046 1.289
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Since the utilization rate is defined as the fraction of time hori-
zon that a tool is busy, �u can be calculated with the simulation

T
S

Product d 

�u 0.003 0.999 0.540 

he kp
uth arrival time of product p at tool u, i.e., Ap

u(kp
u), can thus be

etermined with the following equation:

p
u(kp

u) =
kp

u∑
k=1

Yp
u (k) (40)

s mentioned before, if P different types of products are produced
n tool u, then the run numbers for all products in this tool must be
eassigned according to the precedence order of their arrival times.
hese overall run numbers su can be determined with the assign-
ent function defined previously in Eqs. (12) and (13). Thus, the

rrival time Au(su) and the processing time Zu(su) of any product
t tool u can be expressed alternatively with the run number of all
roducts, i.e.

u(su) = Ap
u(kp

u) (41)

u(su) = Zp
u (kp

u) (42)

here su = ˚(kp
u). Let us consider the simple example in Fig. 2 again

or further clarification. Since it can be observed from the first two
xes kp′

u and kp′′
u that:
Ap′
u (1) < Ap′ ′

u (1) < Ap′
u (2) < Ap′ ′

u (2) < Ap′
u (3)

< Ap′
u (4) < Ap′ ′

u (3) < Ap′ ′
u (4) (43)

able 5
um of variances of tool and product noises in Case 3.

�2[εu] + �2[εp] Tool 1 Tool 2 Tool 3 

Product a 0.432 0.396 0.396 

Product b 0.648 0.612 0.612 

Product c 0.612 0.576 0.576 

Product d 0.432 0.396 0.396 
0.530 0.470 2.090

9 0.805 0.999 0.999

the corresponding run number su and the arrival time Au(su) can be
determined according to in Eqs. (12) and (13) respectively. These
results are plotted on the third axis su.

After fixing the arrival times Au(su) and the service times Zu(su),
the starting times Cu(su), the departure times Du(su) and the waiting
times Wu(su) can be computed with the following formulas:

Cu(su) = Au(su) + Wu(su) (44)

Du(su) = Cu(su) + Zu(su) (45)

where the waiting time at run su can be determined according to
the current arrival time and the departure time at the previous run,
i.e.

Wu(su) =
{

0 if A(su) > D(su − 1)

D(su − 1) − A(su) otherwise
(46)

Furthermore, it is assumed in all our simulation runs that
Wu(1) = 0 and therefore Au(1) = Cu(1). As an example, the time
sequence of a simulated multi-products process is shown in Fig. 4.
results according to the following equation:

�u =
∑NRu

su=1Zu(su)

Du(NRu)
(47)

Tool 4 Tool 5 Tool 6 Tool 7

0.216 0.396 0.216 0.216
0.432 0.612 0.432 0.432
0.396 0.576 0.396 0.396
0.216 0.396 0.216 0.216
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Fig. 6. Comparison of predicted and simulated utilization rates for Case 1.
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Fig. 4. Time sequence of a fictitious multi-products process.

Having determined the arrival and departure times of all prod-
cts to be processed in tool u and their individual and overall run
umbers (i.e., kp

u and su), the embedded RbR control systems can
e simulated according to the model formulation given in Sections
.2 and 2.3.  Consequently, the quality of the finished product yp

u(kp
u),

he estimated mean and variance of the finished product p on tool
, i.e., �̃(yp

u) and �̃2(yp
u), can also be calculated on the basis of the

imulated data.

. Simulation results

The uniform dispatch policy adopted in Case 1 and the opti-
al  dispatching policies obtained previously in Section 3 for Case

 and Case 3 were implemented in numerical simulation studies
o confirm the validity of the proposed MINLP model. The model
arameters used in the simulation runs are the same as those listed

n Table 1. For each of the above-mentioned cases, five (5) repeated
imulation runs were carried out. The resulting simulation data
ere then used for calculating the average values of important per-

ormance indices, such as the process capability of each product and
he utilization rates of every tool.

The average process capabilities of every product and average
tilization rates of every tool obtained for all cases are presented

n Figs. 5–10. In terms of the process capacities, the errors between
he predictions and simulations are around 15%, 3%, and 4% respec-
ively for Cases 1, 2 and 3. On the other hand, the corresponding
rrors in utilization rates are 3%, 6%, and 4% respectively. It can be
bserved that the independently generated model predictions and
imulated results are in general consistent, although process capa-
ility predictions are in most cases slightly higher. Note also that,
lthough the arrivals of different products at each tool are assumed
o be regular in the optimal dispatch model, the inter-arrival times
f incoming products in the simulated stochastic processes at
xponentially distributed. Due this stochastic nature, the sim-
lation results tend to have larger variances and hence smaller

rocess capabilities. Nevertheless the demonstrated ability to pre-
ict the general trends of utilization rate of each tool and process
apabilities of each product indicates that the proposed model
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Fig. 5. Comparison of predicted and simulated process capacities for Case 1.
Fig. 7. Comparison of predicted and simulated process capacities for Case 2.

can be used for determining proper dispatch policies in different
scenarios.

6. Model errors and safe tuning
It was  pointed out in Section 3, that optimal dispatch based on
minimizing overall utilization rate depends on the manufacturing
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Fig. 8. Comparison of predicted and simulated utilization rates for Case 2.
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Table 6

Optimization results for Case 4, maximizing process capability. 	u = 0.6, 
u = 0.4,
∑

u

�u = 5.319,
∑

p

C̃pk[yp] = 7.338.

f p
u Tool 1 Tool 2 Tool 3 Tool 4 Tool 5 Tool 6 Tool 7 C̃pk[yp]

Product a 1 2.295
Product b 1 1.363
Product c 0.464 0.535 0.001 1.385
Product d 0.001 0.528 0.471 2.294

�u 0.884 0.999 0.004 0.99
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Thus, it appears that a safe setting of the controller tuning param-
Fig. 9. Comparison of predicted and simulated process capacities for Case 3.

fficiencies of different products on different tools; and optimal
ispatch based on maximizing process capabilities depends on
he magnitude of different tool-related and product-related noises.
hese are intrinsic properties of tools and products that can be a pri-
ri known to a certain degree of accurateness. However, accurate
stimates of the other parameters of the model, such as dynamic
arameters 	u of the tools, may  not always be available. It is neces-
ary to investigate the impacts of model mismatch with simulation
tudies.
It should first be noted that, if a reasonably accurate estimate of
he time correlation coefficient 	u can be obtained and the assump-
ions that hp

u = 1 and r = 0 in Eq. (27) are acceptable, the optimal
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Fig. 10. Comparison of predicted and simulated utilization rates for Case 3.
9 0.948 0.887 0.599

controller tuning parameter can in fact be determined exactly with
the following equation

(
p
u)opt = 1 − 	p

u = 1 − 	u (48)

Since in general r /= 0 and the estimate of 	u is not reliable, a
heuristic approach is developed in this work for practical applica-
tions. From extensive simulation results, it can be observed that the
model predictions are relatively insensitive to the changes in 	u and

u. For example, Table 6 presented optimization results including
dispatch policy and performance indices obtained using a time cor-
relation parameter of 	u = 0.6 and 
u = 0.4. The simulation results
of average process capabilities of different products obtained with
different values of 	u and 
u (	u = 0.75, 
u = 0.25) were shown
in Fig. 11.  Therefore, if accurate estimates of the dynamic param-
eters cannot be obtained with a high level of confidence, it may
be enough to determine a “safe” interval for every EWMA  tuning
parameter.

Let us define the coefficient of �2[εp
u] in Eq. (27) as:

 (	p
u, 
p

u, r) = 1 + (	p
u)

2 − 2	p
u(1 − 
p

u) + 2
p
ur

1 − (1 − 
p
u)

2
(49)

Under the conditions that hp
u = 1 and 	p

u = 	u,  is plotted
against 
p

u in Fig. 12 for various combinations of 	u and r (	u = 0.01,
0.4, 0.6, 0.9; r = 0, 0.1, 0.2, 0.3). It can be observed that, although the
locations of lowest points on these four curves are different, they
nearly overlap in the interval [0.4, 0.6] and, also, the correspond-
ing function values are approximately the same as their minima.
eter could be chosen around 0.5 if 	u is unknown. This is because,
with such a selection, the variance of each product may  reach a
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Fig. 11. Comparison of predicted and simulated process capacities for Case 4, when
the  parameters 	u = 0.6, 
u = 0.4 used in optimizations are different from those
	u = 0.75, 
u = 0.25 used in simulation.
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ear minimum value and, consequently, the corresponding process
apability should be at least not too far away from the maximum.

. Conclusions

By treating the typical semiconductor manufacturing envi-
onment as multiple parallel queuing systems, a mixed integer
onlinear programming (MINLP) model has been constructed
o determine the optimal dispatching policy. Either process
apacity or utilization rate can be used as the objective function
f optimization problem. When one of them is selected as the
esign objective, the limiting value of the other is imposed as the

nequality constraint in the MINLP model.
Based on the inherent assumptions of M/M/1  queuing sys-

em, the inter-arrival times and processing times of each product
an be simulated with random number generators according to
he aforementioned optimal dispatching policy. The performance
f every individual RbR control system can then be predicted
n numerical simulation studies. The simulation results are con-
istent with those predicted with the aforementioned MINLP
odel.
Minimizing overall utilization leads to dedication of products to

ertain tools because of efficiency of these tools in producing the
articular products. However, such a policy reduces but does not
reclude use of mixed product runs on each tool. Maximizing pro-
ess capabilities lead to more segregated production in which each
ool is dedicated to each product. This is caused by the differences
n process abilities of tools to produce finished product of different
ualities and the improvement of RbR control performance when a
ool is dedicated. Substantial improvement in overall quality can be
chieved without much sacrifice in utilization rate in the example
tudied.

Theoretically the optimal dispatching policy can be imple-
ented in realistic processes if all model parameters are given.
imulation shows that since RbR control is effective, the results
nly on the intrinsic process capabilities of the tools and products;
nd do not depend much on the time-correlation of different tool
isturbances.
ditions hp
u = 1 and 	p

u = 	u .

Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.compchemeng.
2012.12.009.
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