Chemical Engineering

Research fields: Environmental Biotechnology, Biochemical Engineering, **Applied Microbiology, Bioenergy and Biofuel Technology**

| Production and applications of biosurfactants

(without hemolytic activity) **Bacillus pumilus CA20**

Serratia marcescens No.167

(with hemolytic activity)

Emulsion activity of biosurfactants

Surfactin products

Olive oil degradation by biosurfactant-producing bacteria

Т Converting wastes to clean energy (H₂) Granular sludge

(× 150)

(x 10k)

EVA immobilized cells

Biohydrogen production

(× 3.5k)

 $d_p=3-5 \text{ mm}$

Bioreactor design for bioH₂ production

Granular sludge

Activated carbon carriers

Granular sludge bed

Photosynthetic bacteria

Strategies for bioenergy production

I Application of lipase-producing bacteria for food waste treatment

Sreening and identification of lipase-producing isolates

Acidic lipase-producing strain Burkholderia sp. (SEM)

I Innovative bioremediation technology with plants and symbiotic rhizobia

Mimosa sp.

Ralstonia taiwanensis

Phenol-degradation tests

I Molecular biological applications in heavy-metal biotreatment and biosensors

Overproduction of recombinant metallothionein (MT) proteins in *E. coli*

Metal-binding protein MerP as a metal biosensor